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BACKGROUND
Recent	literature	has	shown	a	persistently	high	rate	of	asep-
tic	 loosening	of	 the	 tibial	 component	 in	 total	 ankle	pros-
theses.
METHODS
We	 analyzed	 the	 interface	 between	 the	 tibial	 bone	 and	
tibial	 component	 with	 a	 thermoelastic	 stress	 analysis	 to	
demonstrate	load	transmission	onto	the	distal	tibia.	In	this	
regard,	we	 used	 two	 established	 ankle	 prostheses,	which	
were	implanted	in	two	human	cadaveric	and	in	two	third-
generation	 composite	 tibia	 bones	 (Sawbones®,	 Sweden).	
Subsequently,	the	bones	were	attached	to	a	hydropulser	and	
a	sinusoidal	load	of	700	N	was	applied.
RESULTS
Both	prostheses	had	an	 inhomogeneous	 load	 transmission	
onto	the	distal	tibia.	Instead	of	distributing	load	equally	to	
the	subarticular	bone,	forces	were	focused	around	the	bolt-
ing	stem,	accumulating	as	stress	maxima	with	forces	up	to	
90	MPa.	 Furthermore,	 we	were	 able	 to	 demonstrate	 load	
transmission	into	the	metaphysis	of	the	bone.

CONCLUSION
As	 demonstrated	 in	 this	 study,	 anchoring	 systems	 with	
stems	used	in	all	established	total	ankle	prostheses	lead	to	
an	 inhomogeneous	 load	 transmission	onto	 the	distal	 tibia,	
and	 furthermore,	 to	a	distribution	of	 load	 into	 the	weaker	
metaphyseal	bone.	For	these	reasons,	we	favor	a	prosthetic	
design	with	minimal	bone	resection	and	without	any	stem	
or	stem-like	anchoring	system,	which	facilitates	a	homoge-
neous	 load	 transmission	onto	 the	distal	 tibia.	Thermoelas-
tic	stress	analysis	proved	to	be	a	fast	and	easy-to-perform	
method	to	visualize	load	transmission.	
Key Words: Aseptic	loosening;	thermoelastic	stress	analysis;	total	
ankle	replacement.

AMAÇ
Güncel	literatür	total	diz	protezlerinde	tibial	komponentin	
aseptik	 gevşemesinin	 yüksek	 oranda	 oluştuğunu	 göster-
mektedir.
GEREÇ VE YÖNTEM
Distal	tibiaya	yük	aktarımını	göstermek	amacıyla	tibial	ke-
mikle,	tibial	komponentin	arayüzünü	bir	termoelastik	geril-
me	analiziyle	inceledik.	Bu	amaçla,	iki	insan	kadavrasına	
ve	 iki	üçüncü	kuşak	kompozit	 tibia	kemiklerine	 implante	
edilmiş	 iki	 diz	 protezini	 kullandık	 (Sawbones®,	 İsveç).	
Daha	sonra	kemikler	bir	hidropulsere	monte	edilip	700	N	
gücünde	bir	sinüzoidal	yük	uygulandı.

BULGULAR
Her	iki	protez	de	distal	tibiaya	homojen	olmayan	bir	yük	
aktarımı	gerçekleştirdi.	Yükü	eşit	olarak	subartiküler	ke-
miğe	 dağıtmak	 yerine	 kuvvetler	 protezin	 stemine	 odak-
lanmış,	90	MPa’ya	varan	bir	kümülatif	maksimal	gerilme	
kuvveti	oluşmuştur.	Ayrıca,	kemik	metafizi	içine	yük	ak-
tarımını	göstermeyi	başardık.

SONUÇ
Bu	çalışmada	gösterildiği	gibi	tüm	total	diz	protezlerinde	
kullanılan	stemlerle	yapılan	ankrajlar	distal	tibiaya	homo-
jen	olmayan	bir	 yük	 aktarımı	 ve	 yükün	daha	 zayıf	 olan	
kemik	metafizine	dağılmasına	yol	açmaktadır.	Bu	neden-
lerle	minimal	kemik	rezeksiyonuyla	birlikte	tespit	çubuğu	
veya	benzeri	malzemenin	kullanılmadığı	bir	ankraj	siste-
mini	ve	bu	nedenle	distal	tibiaya	homojen	yük	aktarımını	
tercih	etmekteyiz.	

Anahtar Sözcükler:	Aseptik	gevşeme;	termoelastik	gerilme	anali-
zi;	total	diz	replasmanı.	
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Tibiotalar arthrodesis is the preferred method of 
treatment of posttraumatic, degenerative or inflamma-
tory disease of the ankle when conservative treatment 
options have failed.[1,2] Prosthetic replacements of the 
ankle joint have so far eventually failed or have yield-
ed unsatisfactory results.[3-5] This likely explains why 
arthroplasty at the upper ankle joint remains a ques-
tionable procedure, despite the fact that the first total 
ankle replacements (TARs) were performed in 1970, 
while the number of total hip and knee arthroplasties 
performed steadily increases.[6-8]

With implant loosening rates around 60-90% with-
in the first 10 years, the number of failed systems was 
considerably higher than in knee or hip replacement.
[9-11] Even if numbers dropped to 16-42% by chang-
ing the implantation technique from cemented to 
non-cemented, aseptic loosening is still the biggest 
challenge.[12-14] Newer implant designs therefore put 
more attention on rebuilding the natural anatomy.[15] 
Kinematic aspects have also been considered as well 
as ligament stability and mechanical alignment within 
the joint. The implant-to-bone interface has been un-
burdened by introducing two- and three-component 
implants, now allowing sliding and rotary motion. 
Anatomical studies, published in the 1980s and 1990s, 
demonstrated that only the subarticular bone has the 
strength needed to support the tibial component.[16-19] 
Still, most ankle prostheses feature anchoring systems, 
e.g. stems, to enhance stability. These components ex-
tend into the weaker metaphyseal bone with reduced 
trabecular architecture.[20]

Because it is the tibial component that is more of-
ten loosened aseptically,[12,21] the purpose of the pres-
ent study was to investigate load transmission at the 
implant-to-bone interface. We chose a thermoelastic 
stress analysis model instead of using finite element 
methods, a computational model by approximation. 
Based on the so-called Kelvin effect, thermoelastic 
stress analysis is a well-established test procedure in 
industrial material testing, but relatively new in medi-
cine.[22] The hypothesis was that the high failure rate 
of aseptic loosening is due to inappropriate load trans-
mission onto the distal tibia, and that this can be dis-
played optically. 

MATERIALS AND METHODS
We chose two established third-generation three-

component ankle prostheses, which have been fol-
lowed up by several authors and have an acceptable 
outcome compared to other ankle prostheses (STAR®, 
Waldemar Link, Germany and Salto®, Tornier, France).
[12,21,23,24] Two human tibial bones (male, age 34) were 
obtained from the Institute of Legal Medicine of the 
Ludwig-Maximilian University of Munich within 
24 hours after donor death. Soft tissue was removed 

preserving cortical bone. In addition, two third-gen-
eration composite tibia bones (Sawbones®, Sweden) 
were used. The prostheses were implanted by a skilled 
surgeon (HHT) in one session according to the manu-
facturer. X-ray scans were performed to assure proper 
implantation. Bones were then stored at -20°C until 
analysis and thawed to room temperature before test-
ing.[25,26] For testing, bones were affixed in an alumi-
num drum with polymethylmethacrylate and mounted 
on the testing bench. To serve as a regular bearing, 
the talar components were affixed to the hydropulser 
plunger in a neutral position.

Based on the so-called Kelvin effect, thermoelastic 
stress analysis is a well- established test procedure in 
industrial material testing, but relatively new to hu-
man bone.[22] Load-dependent distension of a body 
causes changes in temperature. Metal, for example, 
grows warm under pressure load and cools down un-
der tensile load. Performing a rapid change between 
pressure and tensile load, one can assume an adiabat-
ic system (a system in which heat is neither applied 
nor discharged). Local change of temperature is then 
proportional to local change of tension and can be de-
tected by the infrared camera system. In this study, we 
used a JADE MWIR infrared camera (CEDIP Infrared 
Systems, Germany) with an array resolution of 320 x 
256 and a pixel pitch of 30 µm. The system measures 
infrared radiation with a wavelength of 3-5 µm, which 
is emitted by the specimen under cyclic loading. Gen-
erally, the infrared camera works just as a normal cam-
era, but instead of a CCD-Chip or a negative film, the 
infrared camera features a resistance detector. This de-
vice transfers infrared radiation into heat and changes 
its resistance proportional to the heat applied. Accord-
ing to that change in resistance, the camera then dis-
plays load transmission in megapascal (MPa; 1 MPa 
= 1 N/mm2).

Fig. 1. The testing setup.
(Color figure can be viewed in the online issue, which is 
available at www.tjtes.org).
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To match the sinusoidal signal captured by the 
camera with a reference signal transmitted by the 
hydropulser, a correlator was used. In doing so, the 
measured signal was assigned by frequency, size and 
phase eliminating errors such as optical reflection or 
infrared radiation from another source.

To simulate ligament tension and to avoid luxation 
of the polyethylene sliding core in the status of com-
plete unloading, a preload of 100 N was applied. After 
finishing all preparations, a sinusoidal oscillation fre-
quency of 10 Hz was installed.[22] The peak load was 
limited to 700 N.

The camera was focused on the implant-to-bone 
interface. Scans were taken from ventral, lateral and 
dorsal views. According to the experimental setup, the 
images are upside down, and were flipped for better 
viewing. The testing setup can be seen in Fig. 1.

RESULTS
Figure 2a shows the STAR ankle prosthesis im-

planted in a human tibia from ventral view. The talar 

implant as well as the polyethylene gliding core can be 
seen at the bottom. The rugged and turbulent appear-
ance of the surface can be attributed to the prepara-
tion (periosteum). Pressure load is shown as negative 
values. As can be seen, load transmission covers the 
whole distal tibia with irregular appearance and values 
from -20 N/mm2 to - 100 N/mm2 (=MPa; megapascal). 
Load transmission extends more into the metaphysis 
on the lateral side than medially.

Figures 2b and 2c (seen from ventral and medial 
views) show the same type of prosthesis implanted 
into a third-generation composite tibia. Because of 
the smooth bone surface load, there is a much better 
display of distribution. Still distribution patterns are 
similar. The load transmission is inhomogeneous with 
an accentuation around the medial stem. Values range 
from -27 N/mm2 to -90 N/mm2. In the medial view, 
load transmission is more ribbon-like. Values range 
between -27 N/mm2 and -46 N/mm2.

Figure 2d shows the Salto ankle prosthesis im-
planted in a human tibia from ventral view. Again, 

Fig. 2. See text for detailed information. (Color figures can be viewed in the online issue, which is available at www.tjtes.org).
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who	described	an	accumulation	of	radiolucency-lines	
and	 aseptic	 loosening,	 respectively,	where	we	 found	
stress	maxima.	

As	demonstrated	in	this	study	with	two	established	
TAR	prostheses,	 load	 transmission	accumulates	with	
high	maxima	around	 the	 anchoring	 systems	 (stems),	
and	because	of	the	stem	length,	these	maxima	are	di-
rected	into	the	weaker	metaphyseal	bone.	This	effect	
was	more	 prominent	 in	 the	 Salto	 than	 in	 the	 STAR	
prosthesis.

For	 these	 reasons,	 we	 favor	 a	 prosthetic	 design	
with	minimal	bone	resection	and	without	any	stem	or	
stem-like	anchoring	system,	which	facilitates	a	homo-
geneous	load	transmission	onto	the	distal	tibia.

In	contrast	 to	finite	element	analysis,	 thermoelas-
tic	 stress	 analysis	 is	 fast,	 easy-to-perform	 and	well-
established	 in	 industrial	 material	 testing.	 With	 this	
relatively	new	method,	we	were	able	 to	demonstrate	
visually	 stress	 load	 in	human	bones.	 In	our	opinion,	
this	non-invasive	method	can	be	helpful	in	optimizing	
the	design	of	next-generation	total	ankle	prostheses.

The	limitations	of	our	study	include	the	relatively	
small	number	of	specimens	and	the	evaluation	of	only	
two	 prosthetic	 models.	 Furthermore,	 thermoelastic	
stress	analysis	is	limited	to	the	bone	surface	and	there-
fore	only	displays	changes	in	heat	on	the	very	surface.
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