Risk of burns in pressure cooker usage: a comprehensive analysis of explosive injuries

Serhat Meriç, Talar Vartanoglu Aktokmakyan, Nadir Adnan Hacım, Hasim Furkan Gullu, Merve Tokocin, Önder Önen, Mustafa Turan

Department of General Surgery, Bagcilar Training and Research Hospital, Istanbul-Türkiye

ABSTRACT

BACKGROUND: Despite the widespread use of pressure cookers for quick and efficient cooking, literature has insufficiently highlighted the potential dangers resulting from inappropriate handling. This study aims to provide a comprehensive overview of 32 patients who presented with pressure cooker burns, emphasizing the serious risks associated with their misuse.

METHODS: Retrospective data were collected from patients admitted to Bağcılar Training and Research Hospital Burn Center between 2017 and 2020 with pressure cooker burns in Türkiye. Data encompassed patient characteristics, burn causes, locations, severities, treatments, and clinical outcomes.

RESULTS: The study included 32 patients (29 female/3 male) with a mean age of 42.3 (8-83). Patients were categorized based on burn areas, revealing associated injuries such as ocular (34.3%) and ear injuries (6.25%). The average hospital stay was 10.5 days [2-37]. While five pressure cookers exploded due to product-related issues, 26 explosions resulted from user errors (15.6%/81.2%). Importantly, no mortality was observed among the patients.

CONCLUSION: While pressure cookers facilitate rapid food preparation, this study underscores the severe risks arising from product or usage errors. This study emphasizes the need for more effective usage instructions and increased awareness about pressure cookers to prevent burn risks. We anticipate that educational programs focused on safe pressure cooker use could significantly reduce the incidence of serious injuries.

Keywords: Burn; explosive burn; pressure cooker.

INTRODUCTION

The pressure cooker, a marvel of culinary convenience, harnesses steam power to expedite meal preparation. Operating on the principle of elevating the boiling point of liquids within, it promises quick and efficient cooking. The functionality of pressure cookers is primarily rooted in the interplay between pressure and the boiling point of water. Operating at elevated temperatures and in a sealed environment, pressure cookers significantly reduce food preparation time. These cookers, equipped with a valve set to a specific boiling point, function under pressure. The valve, adjustable based on desired cooking intensity, serves as a safety mechanism against explosion, preventing the pot from rupturing by releasing steam through the whistle when pressure builds up.

Delving into the historical context of pressure cookers, approximately 300 years ago, in 1679, French physicist Denis Papin, assisted by Irish physicist Robert Boyle, conducted an experiment using a robust iron pot. By tightly sealing the pot’s lid and applying weight to prevent steam pressure, Papin’s pot was born. This innovation allowed meals to be cooked significantly faster than in traditional pots. In contrast to normal...
pots where water boils at a constant 100 degrees Celsius, a pressure cooker’s sealed environment causes the temperature to rise to 125°C (257°F). This heightened temperature accelerates the penetration of heat into food, ensuring swift cooking without compromising the integrity of vitamins and minerals. As a result, meats can be boiled in as little as half an hour, and dry vegetables in just twenty minutes.

By managing steam pressure, these kitchen devices ensure controlled cooking, releasing excess pressure in a regulated manner. While pressure cookers offer a swift and simple culinary solution, the potential dangers associated with their misuse remain inadequately understood. Despite their widespread use in Türkiye, only a limited number of burn cases have been reported in the literature, emphasizing the need for comprehensive research and awareness. In this study, we present a detailed analysis of 32 patients who suffered burns due to pressure cooker incidents over a 3-year period, shedding light on both manufacturer-related defects and user errors.

MATERIALS AND METHODS

This study draws upon data collected retrospectively from patients admitted to the Burn Center of Bağcılar Training and Research Hospital during the years 2017–2020. Ethical approval was obtained from the local data and ethics committee, and the study encompassed a total of 1,808 patients. The focus of our investigation was on 32 patients who suffered second- and third-degree burns, predominantly affecting areas such as legs, arms, chest, shoulders, neck, and face, as a result of contact with steam produced by pressure cookers. Daily dressing of burn areas and the initiation of antibiotic therapy were standard procedures in the management of these cases.

Comprehensive data, including patient demographics, burn mechanism, site and severity of the burn, treatment modalities, and clinical outcomes, were meticulously extracted from clinical records for detailed analysis.

This study seeks to provide a thorough understanding of the demographics and clinical characteristics of patients who experienced burns due to pressure cooker incidents. The collected data will serve as a foundation for evaluating the patterns and outcomes of these incidents, shedding light on both manufacturer-related defects and user errors. While our study thoroughly presents the findings, it is crucial to acknowledge the absence of statistical analysis, which stems from several considerations. The modest sample size of 32 patients may limit the statistical robustness, leading to potential errors. Additionally, the diverse nature of injuries and contributing factors makes standardized statistical approaches less applicable.

RESULTS

The study cohort comprised 32 patients (Female/Male: 29/3) with a mean age of 42.3 years (range 8–83 years). In terms of educational status, 22 were primary school graduates (68.7%), 3 had completed high school, 6 had secondary education, and 1 was a university graduate (Table 1).

Upon examining burn areas, we observed a distribution across right/left arm, right/left forearm, right/left hand, upper/lower body, right/left breast, right/left thigh, right/left foot, face, and neck (Table 2, Fig. 1).

Regarding the degree of burn, 1 patient had a first-/second-degree burn, 3 had second-/third-degree burns, and 28 patients had second-degree burns (87.5%). The mean percentage of total body surface area burned was 14% (range: 5–25%). Three patients required intensive care hospitalization, and specific antibiotics were administered to three patients (9.37%). Thirty-one patients underwent debridement, with only one patient requiring grafting. The average length of hospital stay was 10.5 days (range: 2–37 days). Ocular injuries were associated with 11 cases (34.3%), and auricular injuries were associated with two cases (6.25%) (Table 3, Fig. 2).

The explosion of five pressure cookers resulted from product defects, while 26 explosions were attributed to user error.

<table>
<thead>
<tr>
<th>Table 1. Demographics of included patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Patients Number</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Percentages of burns of included patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn Area</td>
</tr>
<tr>
<td>Face</td>
</tr>
<tr>
<td>Neck</td>
</tr>
<tr>
<td>Right/Left Arm</td>
</tr>
<tr>
<td>Right/Left Forearm</td>
</tr>
<tr>
<td>Right/Left Hand</td>
</tr>
<tr>
<td>Upper/Lower Body</td>
</tr>
<tr>
<td>Right/Left Breast</td>
</tr>
<tr>
<td>Right/Left Thigh</td>
</tr>
<tr>
<td>Right/Left Foot</td>
</tr>
</tbody>
</table>
(15.6%/81.2%). Notably, there were no reported mortalities among the patients involved in the study.

The treatment algorithm in our study involved evaluating patients in the emergency department based on the degree and percentage of burns. Intensive care hospitalization was recommended for cases of explosive pressure cooker burns to monitor inhalation burns and prevent respiratory complications. For patients with facial and neck burns, a multidisciplinary approach was adopted, involving consultations with relevant specialists to address cosmetic and organ-related concerns. None of the patients experienced permanent damage to the eyes or ears. Empirical treatment was initiated, ensuring the hydration of all patients requiring routine hospitalization. Specific antibiotics were reserved for patients in need of intensive care. While 31 patients undergoing routine burn dressings required debridement, only one patient necessitated grafting due to the depth of the burn.

DISCUSSION

The advantages of pressure cookers include the preservation of dish flavors, as steamed dishes are less exposed to water, and the rapid cooking process due to higher temperatures. Additionally, pressure cooking eliminates contact with oxygen, maintaining food quality. [3]

However, cautious use of pressure cookers is crucial to prevent accidents. Key considerations include ensuring that pressure cookers, as explosive vessels, bear the CE mark. Users should avoid overfilling the pot, maintaining the material and water levels below half of the pot's capacity. Adequate water must be added to prevent pot cracking during cooking. After turning off the pressure switch, users should adhere to specified cooking times and refrain from attempting to open the pot lid without reducing pressure, facilitating a safer release by placing the pot in water or under running tap water.

Pressure cookers, initially crafted from cast iron, evolved into variations made of earth, copper, aluminum, enamel, and glass. Maintenance guidelines dictate bicarbonate-based first use for aluminum pressure cookers, while stainless steel variants can be efficiently cleaned with soap and hot water. The gasket, a crucial sealing component, should be replaced annually, and it is recommended that pressure cookers older than five years be replaced. [7]

Despite their efficiency, pressure cookers can pose hazards if not used properly, leading to severe burns. [8] Common reasons for pressure cooker explosions include overfilling, which hampers steam release, and premature lid opening. Attempt-

<table>
<thead>
<tr>
<th>Intensive Care Unit Need</th>
<th>Special Antibiotic Usage</th>
<th>Debridement Need</th>
<th>Graft Need</th>
<th>Ocular Injury</th>
<th>Auricular Injury</th>
<th>Product Error Defect/User</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>31</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>5/26 (15.6-81.2%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. The percentages of included patients with commonly affected areas from the exploding pressure cooker.

Figure 2. A photograph of a patient with a pressure cooker burn causing eye-related damage.
ing to open the lid immediately after cooking without proper
dearaeration and cooling increases the risk of explosion. Our
study highlighted cases where patients suffered organ injuries,
emphasizing the importance of caution and recommending
consulting relevant specialists to mitigate associated prob-
lems.

While serious burn injuries from pressure cooker explosions
are relatively scarce in PubMed-indexed literature, managing
such cases poses complexity in burn care coordination. Burns
are classified based on skin layer involvement: "first-
degree" burns affect the upper epidermis, "second-degree"
burns involve the dermis, often causing blisters, and "third-
degree" burns extend to all skin layers and underlying tis-
nues. In our study, most patients suffered pure second-degree
burns, requiring careful attention to an estimated Total Body
Surface Area (TBSA) to guide referrals for optimal healing. In
our study, with the largest case sample in medical literature, identified the
commonality of injuries resulting from premature lid open-
ing. A notable observation was that over half of the patients
had only completed primary education. Proper lid removal
procedures, such as allowing pressure to release naturally, us-
ing a manual pressure regulator, or employing cold water dis-
charge, should be emphasized in user instructions, especially
to those with lower education levels.

Reports of unintentional explosions involving household
pressure cookers are rare, but associated burns seem to be
on the rise. To mitigate burn risks, providing effective
usage instructions and educating users, particularly those
with limited education, can enhance awareness and safety.
This study aims to contribute to raising awareness of pres-
sure cooker dangers.

The discourse surrounding our findings is fundamentally root-
ed in technical considerations, yet a conspicuous gap exists
in the examination of a comprehensive treatment algorithm
pertaining to uninstructed use. This omission raises critical
concerns, urging a meticulous exploration of the nuanced
intricacies associated with therapeutic interventions lacking
clear guidelines. The absence of a well-defined treatment al-
gorithm for instances of uninstructed use poses a significant
challenge, as it hinders the establishment of standardized,
evidence-based approaches for optimal patient outcomes. It
is imperative to recognize that the effectiveness and safety of
medical treatments are inherently intertwined with the struc-
tured application of treatment algorithms. Without a robust
algorithm, the risk of variability in clinical decisions increases,
potentially leading to suboptimal outcomes and compromised
patient safety. Addressing this deficiency in our discussion
necessitates a deeper analysis of the existing gaps in treat-
ment protocols and serves as a catalyst for future research
endeavors aimed at formulating comprehensive, standardized
treatment algorithms, particularly in scenarios where clear
instructions may be lacking.

Nevertheless, the study has limitations, including a small pa-
tient population and a retrospective design, which prevent
drawing conclusive insights or conducting statistical analyses.
Extended follow-ups and larger series are warranted for more
comprehensive results. Despite the comprehensive insights
provided in this study, certain limitations should be acknow-
ledged. Firstly, the study primarily relies on a retrospective
analysis of cases, potentially leading to selection bias. Addi-
tionally, the sample size, while noted as the largest in medical
literature for pressure cooker burns, may still be limited in
capturing the full spectrum of incidents. The retrospective
nature also poses challenges in obtaining real-time data on
user behavior and specific circumstances leading to accidents.
Furthermore, the study does not delve into the psychologi-
cal aspects influencing user behavior, which could play a sig-
nificant role in safety practices. Future research could benefit
from prospective studies, larger sample sizes, and a more in-
depth exploration of user psychology to enhance the under-
standing of pressure cooker-related incidents.

CONCLUSION

Our study represents the first with the largest case sample of
pressure cooker explosions documented in medical literature,
addressing the associated risks and injury patterns. Given the
widespread use of pressure cookers as household appliances,
it is imperative for emergency physicians to be cognizant of
the rare but significant dangers they present. Evaluating inju-
ries resulting from pressure cooker explosions necessitates
a comprehensive trauma assessment, emphasizing the ex-
amination of areas at risk and evaluating the patient’s physical
proximity to the stove at the time of the incident.

Ethics Committee Approval: This study was approved by the Bagcilar Training and Research Hospital Ethics Com-
mittee (Date: 15.01.2021, Decision No: 2021.01.10.184.
r1.010).

Peer-review: Externally peer-reviewed.

Conflict of Interest: None declared.

Financial Disclosure: The author declared that this study
has received no financial support.

REFERENCES

slate.com/articles/life/food/2012/02/the_pressure_cooker_makes_a_
2. Arreya A, Kanchan T, Nepal S. Pressure cooker—a potential hazard in
4. Nicoletti B. Primary care: life in the pressure cooker, J Med Pract Manage
5. Sandir RK, Sandhir M. Accidental pressure cooker lid blowout. Burns
1992;18:438. [CrossRef]
6. Gundaoglu AO, Yenidunya MO. Burn and mandibular fracture due to

Düdüklü tencere kullanımında yanık tehlikesi: Patlayıcı yaralanmaların detaylı incelemesi

Serhat Meriç, Talar Vartanoglu Aktokmakyan, Nadir Adnan Hacım, Hasim Furkan Gullu, Merve Tokocin, Önder Önem, Mustafa Turan

Bağcılar Eğitim ve Araştırma Hastanesi, Genel Cerrahi, İstanbul, Türkiye

AMAÇ: Hızlı ve etkili yemek pişirmek için yaygın olarak kullanılan düdüklü tencerelerin, uygun olmayan kullanımından kaynaklanan potansiyel tehlike-leri literatür yeterince vurgulamamıştır. Bu çalışma, düdüklü tencere yanıklar nedeniyle tedavi arayan 32 hastayı kapsayarak, düdüklü tencerelerin yanlış kullanımından kaynaklanan yanıkların risklerini vurgulamayı amaçlamaktadır.

BULGULAR: Çalışma, 32 hastayı (29 kadın/3 erkek) içermekte olup, ortalama yaşları 42.3 (8-83) idi. Hastalar, yanık bölgelerine göre kategorize edildi ve ilişkili yaralanmalar, özellikle oküler (%34.3) ve kulak yaralanmalar (%6.25) içermekteydi. Ortalama hastanede kalış süresi 10.5 gün [2-37] idi. Ürünle ilgili sorunlardan kaynaklanan 5 düdüklü tencere patlaması yaşanırken, 26 patlama kullanıcı hatalarından kaynaklandı (%15.6 / %81.2). Hastalar arasında mortalite gözlemlenmedi.

SONUÇ: Düdüklü tencereler, hızlı yemek pişirmeyi kolaylaştırırken, bu çalışma ürün veya kullanım hatalarından kaynaklanan ciddi riskleri vurgulamaktadır. Bu çalışma, daha etkili kullanım talimatlarına ve düdüklü tencerelerle ilgili farkındalığın artırılmasına ihtiyaç duyuyor. Güvenli düdüklü tencere kullanımına odaklanan eğitim programlarının, ciddi yaralanmaların insidansını önemli ölçüde azaltabileceğini öngörüyoruz.

Anahtar sözcükler: Düdüklü tencere; patlayıcı yanık; yanık.

Ulus Travma Acil Cerrahi Derg 2024;30(3):216-220 DOI: 10.14744/tjtes.2024.38131