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Introduction 
Inborn errors of immunity (IEI) are genetic diseases 

comprised of a wide range of immune-mediated phenotypes 
including infections, autoimmunity, autoinflammation, 
susceptibility to malignancy and atopy. Those IEI 
associated with significant atopy- whether the other immune 
comorbidities are noted or not, are proposed to be termed as 
primary atopic disorders (PADs) (1).

The primary causes of allergic disease coalesce around 
immune cell-intrinsic and skin barrier abnormalities. PADs 
caused by mutations in genes impacting the skin barrier 
and regulation of the type II, or allergic, immune response 
have been well described. Immune-mediated mechanisms 
can include abnormal T-cell receptor (TCR) or cytokine 
signaling, immune tolerance breakdown, and irregularities 
in mast cell function (Figure 1). Our knowledge of the full 
spectrum of PADs is limited by the referral biases leading 
to reports of cohorts. However, more severe, early-onset 
allergic disease, autoimmune or infectious comorbidities, 
non-immune syndromic comorbidities, and atypical clinical 
courses are all red flags of PADs (1). It is vital for healthcare 
providers to be skilled in identifying PADs and to offer 

effective, and sometimes precision treatment choices (2). 
Although most severe cases are usually associated with 
monogenic causes, many patients with PADs demonstrate 
more benign phenotypes as well. Even amongst carriers of 
the same mutation, some people do not show any symptoms 
associated with the disease; others demonstrate benign 
symptoms that can be managed with conventional therapy, 
and yet others can have severe, difficult-to-treat symptoms 
for whom which targeted treatments might lead to better 
outcomes. This incomplete penetrance and variability in the 
expression of the disorders is the rule, not the exception, 
for many PADs (3). Many PADs can also be managed 
similarly to common allergic disorders. However, precision 
treatments such as monoclonal antibodies or Janus Kinase 
(JAK) inhibitors can be helpful in resistant cases, which 
will be described in more detail in the later sections.

In this review, we provide an update regarding novel 
PADs or insight into previously known PADs in subtopics 
based on their molecular and cellular mechanisms and aim 
to encourage clinicians to be vigilant in identifying these 
rare conditions.
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The Omenn Syndrome (OS) Phenotype
Unlike most other PADs, the phenotype of erythroderma, 

atopic dermatitis (AD)-like rash, lymphoproliferation, 
eosinophilia and high immunoglobulin E (IgE) is seen 
in OS, is the result of “leaky” severe combined immune 
deficiency (SCID), whereby a few T-cell clones emerge 
in the context of what otherwise appears like SCID, and 
oligoclonally expand (4-7). OS, while very rare, tends to 
present after about 2-3 months, but before 1 year of age, 
and is not tied to allergen-driven atopic disease. 

The CBM Complex in Rare and Common Atopic 
Disease

Activation and differentiation of T-cells occur after 
stimulation of T-cell receptors. When there is a disruption 
in this signaling pathway, abnormal activation results in 
immune regulation failure and differentiation skewing. 
One example is CADINS [CARD11-associated atopy 
with dominant interference of nuclear factor kappa B 
(NF-kB) signaling]. CARD11 protein is a member of the 
CBM (CARD11-BCL10-MALT1) signalosome complex. 
Complete loss of function mutations in the CBM complex 
result in severe immune deficiency (4,5). Complete loss of 
function of a gene occurs when the protein is not expressed 
at all, or the expressed protein does not have any function-
this is often associated with such severely impaired cellular 
function that atopic disease cannot occur. MALT1 loss-of-
function (LOF) mutations leads to severe immune deficiency, 
atopy, failure to thrive and mucosal inflammation (6,7). On 
the other hand, hypomorphic mutations cause partial loss of 
a gene function. Heterozygous, hypomorphic, and dominant 
negative mutations in CARD11 lead to AD, asthma, food 
allergy, eosinophilic esophagitis (EoE) and allergic rhinitis 
(8). The mechanism behind this phenomenon is not likely 
related to NF-kB activation as none of the patients with 
mutations in downstream NF-kB pathway genes show 
atopic features (9-12). Of note, common MALT1 variants 
are associated with risk for allergies (13,14).

Several reports have suggested that dupilumab, a 
monoclonal antibody against IL-4 and IL-13, is effective 
in CADINS patients and other primary and common atopic 
disorders (15-18). CARD14 is a member of the Caspase 
recruitment domain-containing (CARD) protein family and 
complexes with BCL10 and MALT1 in keratinocytes and 
epithelial and mucosal tissues (19). While gain of function 
mutations in CARD14 lead to psoriatic autoinflammatory 
skin disease and NF-kB activation (5,20,21); hypomorphic, 
dominant negative (DN) CARD14 mutations disrupt barrier 
function and impair NF-kB activation and antimicrobial 
peptide production, leading to severe eczema and other 
atopic features, along with recurrent bacterial and viral skin 
infections (19). Common CARD14 variation also regulates 
epidermal filaggrin levels - a key skin barrier protein whose 

loss contributes perhaps more substantially to the risk for 
atopic dermatitis than any other genetic factor (22).

CARD9 complexes with BCL10 and MALT1 in 
dendritic cells, macrophages, and neutrophils (21). It 
facilitates response to pattern recognition receptors and 
further activates the NF-kB pathway. Patients deficient in 
CARD9 are susceptible to mucocutaneous and systemic 
fungal infections and exhibit eosinophilia and elevated 
serum IgE (19). Common heterozygous variants in 
CARD9 are associated with an increased risk of allergic 
bronchopulmonary aspergillosis (ABPA) (23,24).

Antigen Receptor Signaling and Actin Reorganization 
Defects Associated with Atopy

TRAF3 is an adaptor protein that plays multiple 
roles in various intracellular signaling cascades and acts 
as a negative regulator of cytokine and B-cell receptor 
signaling NF-kB2 pathway in B cells, and a positive 
regulator of TCR and certain TLR signaling. Interestingly, 
haploinsufficiency of TRAF3 has recently been described 
to lead to variably penetrant B-cell-mediated autoimmunity, 
lymphoproliferation, humoral immune deficiency with 
bronchiectasis, atopic and autoinflammatory diseases (25). 
A variant in TRAF3 in a patient with herpes simplex 
encephalitis (26) has been shown to be a relatively common 
variant not associated with viral infection per se, but it does 
appear to be a risk allele for a number of immune-mediated 
phenotypes.

Another PAD caused by disruption of TCR signaling 
is CARMIL2 (RLTPR) deficiency. CARMIL2 is an actin-
uncapping protein specific to lymphoid lineage and essential 
for stimulation through CD28 and Treg development (27). 
It also plays roles in actin polymerization and cell polarity 
(28); therefore, it can be included in the subsequent 
section. Although it has a role in CD28 signaling, 
CARMIL2 deficiency differs from CD28 deficiency 
and regulates NF-KB signaling through PKC-θ (29). 
Autosomal recessive CD28-deficient patients have a high 
susceptibility to cutaneous HPV infections (30), whereas 
CARMIL2 deficiency will result in immunodeficiency with 
broad susceptibility to various pathogens, including HPV, 
and accompanied by eczematous dermatitis, food allergy, 
asthma, EoE, allergic rhinitis, EBV positive smooth muscle 
tumors, and inflammatory bowel disease (28,29,31-33). 

Immune Disorders Caused by Cytoskeletal 
Dysfunction

After TCR stimulation, cell activation via the 
immunologic synapse and proliferation relies on actin 
polymerization and cytoskeletal rearrangement. Defects in 
one of the proteins involved in this step result in immune 
deficiency and immune dysregulation syndrome, which 
commonly come along with allergy, eczema associated 
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with petechia, autoimmunity, neoplastic manifestations 
and bleeding problems (4,34). One of the most well-known 
diseases in this group is Wiskott-Aldrich syndrome, caused 
by X-linked mutations in the Wiskott-Aldrich syndrome 
protein (WASP). Upon activation, WASP is released from 
WIP (WASP Interacting Protein) which causes substantial 
changes in the migration and proliferation of the cells (35). 
Biallelic loss of function mutations in WIPF1, ARPC1B and 
ARPC5 cause a similar phenotype to WAS which presents 
with combined immunodeficiency, recurrent infections, 
autoimmunity, allergies, bleeding problems, eczema and 
high IgE (36-39). DOCK8 is another protein that is essential 
for WASP function by stabilizing WIP. DOCK8 deficiency 
manifests as susceptibility to viral infections, eczema, 
high IgE, autoimmunity, and neoplastic transformation 
(40). Serine/threonine kinase 4 (STK4) has regulatory 
roles in apoptosis and cytoskeletal rearrangement and its 
deficiency results in severe combined immunodeficiency 
phenotype like DOCK8 deficiency; however, although 
eczematous lesions and high IgE levels can be seen, 
the severity of atopic symptoms would be less in STK4 

deficiency than DOCK8 deficiency (41,42). CDC42, on the 
other hand, is a GTPase regulating cell motility, migration, 
and polarization by organizing actin cytoskeleton. 
Germline mutations in this gene cause neonatal onset of 
pancytopenia, autoinflammation, rash and hemophagocytic 
lymphohistiocytosis (NOCARH syndrome) and have been 
reported to demonstrate atopic features like high IgE levels, 
rash and eczematous lesions and food allergies (43). ERM 
protein family (ezrin-radixin-moesin) crosslinks plasma 
membrane proteins to actin cytoskeleton (44). Moesin 
deficiency causes impaired chemotaxis and immunological 
synapse formation, resulting in X-linked immunodeficiency 
syndrome with atopic features manifesting with eczema, 
bacterial and viral infections, especially VZV and 
lymphopenia. Thrombotic thrombocytopenia was also 
reported (45). LOF mutations in the NCKAP1L gene cause 
the missing HEM1 protein, which has roles in mTORC2 
activation and actin regulation by activating the Arp2/3 
complex. Loss of this protein causes immunodeficiency 
syndrome with immune hyperactivation features. These 
patients were reported to have susceptibility to infections, 

Figure 1. Overview of primary atopic disorders
AD: Atopic dermatitis, EoE: Eosinophilic esophagitis, DN: Dominant negative, Gln: glutamine, HLH: Hemophagocytic lymphohistiocytosis, EGID: 
Eosinophilic gastrointestinal disease, ERM: Ezrin-radixin-moesin, WAS: Wiskott-Aldrich syndrome, CT: Connective tissue, LOF: Loss-of-function, LDS: 
Loetz Dietz syndrome, GOF: Gain-of-function
*: CARD14 is found in keratinocytes, located in downstream of keratinocytes receptors; such as Dectin-1
This figure is created with BioRender.com
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autoimmune diseases, and atopic diseases such as asthma 
and elevated IgE levels (46).

Theories for why atopic disease develops in these 
diseases include abnormal Treg function (47)- perhaps due 
to insufficient TCR stimulation-and intrinsic Th2 skewing 
similar to that seen in CBM complex mutation or others. 
Interestingly, DOCK8-deficient patients' lymphocytes 
undergo cytothripsis when migrating through tissue. The 
broken-up cells appear to serve as an adjuvant for tissue 
Th2 inflammation, suggesting another possible mechanism 
for allergy in patients with cytoskeletal defects (48,49).

Hematopoietic stem cell transplantation (HSCT) 
remains the standard of care for most actinopathy patients 
(50). Resolution of recurrent infections and eczema 
appear as a response to treatment. However, food allergy, 
autoimmunity and cancer development may persist (1). The 
persistence of autoimmunity and malignancy development 
might be associated with mixed or split chimerism status 
after transplantation and previous exposure to oncogenic 
viruses (51). In contrast, persistent allergies might be 
associated with long-lived recipient derived plasma cells 
(52). One critical point to consider is to transplant these 
patients at an early age, before end-organ damage or 
malignancy occurs, since the disease progresses more 
severely in late childhood and adolescence. Therefore, 
identifying these patients during infancy or toddler period 
has the utmost importance. Early in life they can only 
present with milder symptoms such as atopic dermatitis 
and recurrent mucosal infections. On the other hand, gene 
therapy offers promising results for treating WAS, as it has 
previously shown improvement in immune cell function 
and clinical symptoms (53).

Disturbances in JAK/STAT Signaling Pathway-Gain 
and Loss

JAK - signal transducers and activators of transcription 
(STAT) family includes seven transcription factors (STAT1, 
STAT2, STAT3, STAT4, STAT5A/B, and STAT6) and 
four receptor-associated kinases (JAK1, JAK2, JAK3, 
TYK2), which regulate various cellular functions, 
including immunity, growth, differentiation, and survival 
(54). Abnormalities in the JAK-STAT pathway have been 
implicated in the pathology of several immune-mediated 
inflammatory diseases, including atopic diseases (55).

One of the major pathways that is important among 
monogenic allergic diseases is the interleukin (IL)-6/STAT3 
signaling pathway. Disruption of the IL-6-mediated immune 
response clinically associates with an attenuated acute 
phase inflammatory response and subsequent susceptibility 
to serious bacterial infections (56-59). Even neutralizing 
anti-IL-6 autoantibodies can lead to this phenotype (59-
61). The association of allergy with IL-6 signaling-either 
in PADs or common association- is significant. Numerous 

common IL6R variants are associated with multiple atopic 
and asthmatic phenotypes (62). IL-6 receptor deficiency 
leads to atopic manifestations such as eczema, elevated 
IgE and eosinophilia, reduced inflammatory responses 
(including absent CRP), and recurrent skin and lung 
infections (63). While IL6R deficiency is limited to 
immune-mediated phenotypes, loss of gp130, encoded 
by IL6ST, has additional skeletal phenotypes due to 
the non-redundant role for other cytokines that signal 
through gp130. Recessive IL6ST deficiency leads to 
variable presentation of autosomal recessive hyper-IgE 
syndrome. In contrast, milder, DN IL6ST mutations lead 
to severe, destructive lung disease with pneumatoceles 
and bronchiectasis, frequently associated with Aspergillus 
infection or ABPA, staphylococcal lung infection, elevated 
IgE and eosinophilia.

Downstream of IL-6 receptor/gp130 are JAK1 and 
STAT3, while ZNF341 is a transcription factor that 
regulates STAT3 expression (64,65). The overwhelming 
majority of heterozygous STAT3 LOF mutations act in a DN 
fashion (66), a raft of immune and non-immune mediated 
multisystem disorders, including symptoms seen in IL6R 
and/or gp130 deficiency-eczema, eosinophilia, elevated IgE 
levels, mucocutaneous candidiasis, respiratory infections, 
lupus-like autoimmunity, structural lung disease and 
connective tissue abnormalities (66-68). Haploinsufficiency 
of STAT3 may lead to a distinct disorder, including 
fatal invasive aspergillosis, allergic rhinitis, eosinophilic 
esophagitis and elevated IgE. However, it is of interest that 
conditional heterozygous Stat+/- mice have few immune-
mediated phenotypes (69,70).

Phosphoglucomutase 3 (PGM3) deficiency due to 
biallelic hypomorphic mutations in PGM3 can lead to 
profound allergic disease with severe AD, food allergy, 
asthma, EGIDs, allergic rhinitis, ABPA, and food-protein 
induced enteropathy syndrome accompanied by infectious, 
inflammatory, musculoskeletal and neurodevelopmental 
comorbidities. Some phenotypic similarities with IL6ST/
STAT3/ZN341 deficiency may be explained by decreased 
N-glycosylation of gp130, leading to diminished surface 
gp130 expression (71-75).

One of the findings in STAT3 DN patients is evidence 
of abnormal TGF-β activity (76,77). This may help explain 
the phenotypic overlap of multisystem atopy and connective 
tissue abnormalities seen in ERBIN LOF and Loeys-Dietz 
syndrome (LDS), both impacting TGF-β signaling. The 
infectious phenotype seen in those two disorders is quite 
limited compared to STAT3 DN, leading to a rather unique 
“atopy + connective tissue abnormalities alone” phenotype 
(78,79).

The management of patients with JAK/STAT loss of 
function typically involves antimicrobial prophylaxis and 
immunoglobulin replacement to prevent infections, and 
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HSCT has also emerged as a potential treatment (58,80). 
Enhanced IL-4 receptor expression has been noted in 
STAT3 DN, ERBIN and LDS patients, explaining the 
excellent response to dupilumab in otherwise refractory 
atopic settings (81-84).

In contrast to the loss of function in the IL6/
STAT3 pathway, patients with STAT3 gain-of-function 
(GOF) develop marked classical autoimmune and 
lymphoproliferative phenotypes, with few connective 
tissue abnormalities, and little allergic disease except for 
eczematous dermatitis in a subset (85).

However, gain of function mutations in JAK1, and the 
downstream STAT5 and STAT6, lead to striking atopic 
phenotypes, depending on the specificity of the signals 
propagated by JAK1 or the given activated STAT (2,86,87). 
JAK1 GOF mutations primarily manifest with marked 
eosinophilia and eosinophilic tissue inflammation, atopic 
dermatitis, autoimmunity and failure to thrive; phenotypes 
associated with STAT6 GOF mutations encompass treatment-
resistant atopic dermatitis, hypereosinophilia, eosinophilic 
gastrointestinal disease, asthma, elevated serum IgE levels, 
IgE-mediated food allergies, anaphylaxis, infections, 
growth impairment, and vascular brain malformations (88-
91). This condition results from heterozygous missense 
mutations occurring in multiple protein domains of STAT6, 
primarily near the TF-DNA interface, which, by increasing 
electro-positivity, enhances STAT6’s DNA binding and 
contributes to its gain of function pathology. STAT6 
plays a crucial role in allergic inflammation processes. 
STAT5 GOF mutations may result in immunodeficiency, 
hematologic abnormalities, and infection predisposition 
(2,86,87). Individuals carrying JAK1 GOF mutations, 
leading to STAT5B phosphorylation, exhibit features such 
as allergic asthma, and peripheral and tissue eosinophilia 
resembling STAT5B GOF patients, yet distinguishably, they 
also manifest severe atopic dermatitis (2,92,93). STAT5 
signaling role in atopic diseases is rather complicated. 
Somatic heterozygous GOF mutations in STAT5B occurring 
within the hematopoietic compartment have been shown to 
result in severe neonatal eosinophilia, urticaria, diarrhea, 
and granulomatous disease (87). Interestingly, the same 
STAT5B GOF mutation has been linked to leukemia and 
lymphomas, some involving eosinophilia. This finding 
suggests different outcomes for STAT5B GOF mutations; 
neonatal-onset somatic mutations do not seem to result 
in overt neoplasms over time, but instead appear to be 
associated with an inborn error leading to a PAD. Precision 
treatments using JAK inhibitors have proven highly 
effective in ameliorating clinical symptoms and immune 
biomarkers in individuals with STAT5B GOF, STAT6 
GOF and JAK1 GOF mutations (2,88,89,94). Monoclonal 
antibodies like omalizumab (targeting IgE), dupilumab 

(targeting IL-4 and IL-13), reslizumab, benralizumab, 
and mepolizumab (targeting IL-5) have proven to be 
effective in treating eczema and other allergic symptoms; 
in some cases, HSCT can help restoring immune function 
and alleviating infection rates and dermatological issues, 
particularly when performed at a young age (95-98).  

Monogenic Disorders Impacting Mast Cells
Mast cells are critical for the development of allergic 

reactions (84). Monogenic disorders affecting mast cell 
function form a distinct subset of PADs -especially when 
comorbid immune deficiency or dysregulation is lacking 
(4). Several disorders have been described to be associated 
with physical urticaria-though again differing from typical 
physical urticaria in that the phenotype is present from 
birth and lifelong. These include autosomal dominant 
familial vibratory urticaria -mast cell degranulation 
due to mechanical stress caused by a specific missense 
substitution in ADGRE2 (encoding EMR2) identified in 
a Lebanese founder population (100). The disruption of 
EMR2 by mechanical stress is a normal process in mast 
cells but amplified in the affected patients. Interestingly, 
EMR2 can be cleaved by heterotetramers of alpha and beta 
tryptase (101), and individuals with increased copies of 
alpha tryptase are more prone to vibratory urticaria. Excess 
copies of alpha tryptase, caused by duplications of the alpha 
allele at TPSAB1, lead to Hereditary alpha-tryptasemia 
(HAT). HAT is relatively common (~5% of Caucasians) 
and this is explaining elevated basal serum tryptase in the 
overwhelming majority of individuals and also potentially 
increasing the risk for developing mastocytosis, anaphylaxis 
or both (102-104). Recent genome-wide association studies 
have shown that a locus linked to HAT is also associated 
with urticaria risk (105,106).

The historical term “familial cold urticaria” is used to 
refer to what is now called Familial Cold Autoinflammatory 
syndrome (FCAS) resulting from NLRP3 mutations, which 
typically result in excessive IL-1 production (107). The 
cold-induced “urticaria” observed in these patients is 
only due to systemic, not local cooling, and leads to a 
neutrophilic urticaria-like rash distinct from typical mast 
cell degranulation. Different autoinflammatory disorders 
like FCAS can be associated with different risks -increased 
or decreased- for clinical and laboratory atopic phenotypes 
(108,109). True mast-cell mediated familial urticaria is 
the predominant phenotype in PLAID (PLCG2 associated 
antibody deficiency and immune dysregulation). Patients 
with PLAID experience pruritus and erythema upon 
exposure to evaporative cooling. Unlike typical cold 
urticaria, PLAID-related urticaria is presents from birth, 
persists throughout life, and is not triggered by the ice 
cube test. Deletions in the autoinhibitory cSH2 domain 
are associated with PLAID. These deletions paradoxically 
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lead to cellular anergy at normal body temperatures in 
cells expressing PLCγ2, resulting in poor B-cell class-
switching and concurrent humoral immune deficiency, 
as well as autoimmunity due to loss of B-cell tolerance, 
which are variably observed in PLAID patients (110-112). 
Minor drops in temperature below physiological levels 
lead to spontaneous PLCγ2 activity, resulting in mast cell 
degranulation without receptor-ligand interaction. Similar 
activity in other myeloid cells may explain the formation 
of skin granulomas with body temperature drop in some 
patients (110,113).

Immune Dysregulatory Disorders - Tregopathies
Immune dysregulatory disorders associated with 

atopy and allergy are IPEX (Immune dysregulation-
Polyendocrinopathy-Enteropathy-X-linked) and IPEX-like 
disorders. IPEX is caused by mutations in FOXP3 gene, 
which is the main transcription factor for Tregs (114,115). 
Tregs are the main lymphocyte subset responsible for 
immune tolerance and control immune responses in the body 
(116). Impairment of Tregs leads to various autoimmune 
manifestations along with severe eczema, associated 
with Th2 reprogramming in this cell population (117). 
Patients also develop other allergic manifestations such 
as food allergies (118-120). Type of mutation in FOXP3 
causes different phenotypes of the IPEX disease. DNA-
binding domain mutations lead to spontaneous multiorgan 
autoimmunity, whereas organ-specific autoimmunity 
originates from non-DNA binding domains and depends on 
environmental and other genetic factors as well (119-121).

CD25 is the receptor for IL-2 and marker for Tregs, also 
has a role in Treg maintenance (122,123). Loss of function 
mutations of CD25 result in IPEX-like syndromes (124). 
IL-2 receptor transmits its signals via STAT5B, therefore, 
STAT5B deficiency also leads to IPEX-like syndromes 
(125). Unlike STAT5B GOF mutations, atopy in STAT5B 
deficiency is due to defective Treg function rather than 
hyperactivation of Th2 responses. These patients also have 
growth hormone insensitive dwarfism (126).

Epithelial Barrier Defects
Disruption of the epithelial barrier leads to atopy 

development possibly due to increased antigen exposure 
(4). Monogenic causes of epithelial barrier disruption are 
also included in PADs. Filaggrin is a barrier protein and 
loss of this protein by FLG mutations causes ichthyosis 
vulgaris, severe atopic dermatitis and food allergy (127-
129). Desmosomes are part of the keratinocyte barrier and 
mutations in desmosomal genes (CDSN, DSP, DSG1) lead 
to allergic phenotype (130-132). The severity of the allergic 
and atopic phenotype again depends on the type of mutation 
in these genes. It can range from ichthyosis vulgaris to 
SAM (severe dermatitis - multiple allergies - metabolic 

wasting) (130,131). SPINK5 encodes protease inhibitor for 
desmosomes and LOF mutations in SPINK5 gene cause 
Comel-Netherton syndrome, manifests as desquamation, 
severe ichthyosis, bamboo hair, and recurrent infections in 
addition to atopy (133). Dupilumab and immunoglobulin 
replacement therapy are effective in the management of 
these manifestations (134-137).

Disruption of Th1/Th2 Counter-Regulation
IKAROS is a pleiotropic transcriptional repressor with 

a substantial role in lymphocyte differentiation. Gain-of-
function mutations in IKZF1 lead to Th2 skewing, and 
patients can develop allergic disease, asthma, eosinophilia, 
lymphoproliferation, and immune dysregulation. Enhanced 
repression of IFN-γ and Treg abnormalities may explain the 
Th2 skewing and predisposition to allergic disease (138). 

Conclusion
PADs arise from genetic alterations that might affect 

variety of cell types and functions. Some of these diseases 
originate from aberrations of immune cell, caused by 
the loss or gain of functions of the different signaling 
pathways. In contrast, others are caused by disruptions in 
cytoskeletal rearrangement inside the cell, which lead to 
migration and differentiation problems. The main goal of 
this review is to raise awareness in clinicians to be wary 
of these disorders when there are multiple red flags such 
as early-onset, resistant atopic disease, elevated levels 
of eosinophils and IgE, and concomitant immunological 
abnormalities like autoimmunity and recurrent infections. 
We also aim to encourage researchers to study more about 
these diseases in depth by emphasizing the importance of 
understanding the disease mechanisms to develop efficient 
and targeted treatments.
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