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ÖzAbstract

Sağlık hizmetine yönelik kanıta dayalı literatür günümüzde katlanarak 
artmaktadır. Makine öğrenimi gibi yapay zeka (YZ) araçlarındaki 
ilerlemenin sağladığı fırsatlar ile mevcut sağlık hizmetindeki 
zorlukların pek çoğunun üstesinden gelinecek gibi görünmektedir. 
Bu yüzden, YZ entegrasyonu sağlık hizmetinin hematoloji alanı 
dahil çoğu alanında artmaktadır. Bu çalışmada hematopoietik hücre 
transplantasyonunda (HHT) mevcut YZ uygulamalarının gözden 
geçirilmesi hedeflenmektedir. İzleyen veri tabanlarını içeren bir 
literatür taraması yapılmıştır: Ovid MEDLINE, Google Akademik, 
işlemde olan ve dizine eklenmemiş diğer alıntılar dahil. Aşağıdaki 
profesyonel derneklerin özetleri de taranmıştır: Amerikan Hematoloji 
Derneği, Amerikan Kan ve Kemik İliği Transplantasyon Derneği ve 
Avrupa Kan ve Kemik İliği Transplantasyon Derneği. Bu literatürlerin 
taranması ile HHT alanına YZ’nin entegrasyonunun son on yılda anlamlı 
ölçüde arttığı ve transplant öncesi ve sonrası zorlukların hedeflendiği 
HHT popülasyonun teşhis ve prognozunda umut vaat eden yollar 
sunduğu görülmüştür. HHT’ye YZ’nin entegrasyonu ile ilgili çalışmalar, 
yetersiz test edilmiş algoritmalar, genelleştirilebilme eksikliği ve farklı 
YZ araçlarının sınırlı kullanımı gibi pek çok sınırlamalara sahiptir. 
Geleceğin uygulama paradigması olacağına inandığımız HHT’de 
makine öğrenim teknikleri, daha fazla gelişmeye ve hematolojiden, 
HHT derneklerinden ve organizasyonlarından yoğun desteğe ihtiyaç 
duyan araştırmanın yoğun olduğu bir alandır.

Anahtar Sözcükler: Yapay zeka, Makine öğrenimi, Hematopoietik 
hücre transplantasyonu

The evidence-based literature on healthcare is currently expanding 
exponentially. The opportunities provided by the advancement in 
artificial intelligence (AI) tools such as machine learning are appealing 
in tackling many of the current healthcare challenges. Thus, AI 
integration is expanding in most fields of healthcare, including the field 
of hematology. This study aims to review the current applications of 
AI in the field of hematopoietic cell transplantation (HCT). A literature 
search was done involving the following databases: Ovid MEDLINE, 
including In-Process and other non-indexed citations, and Google 
Scholar. The abstracts of the following professional societies were 
also screened: American Society of Hematology, American Society for 
Blood and Marrow Transplantation, and European Society for Blood 
and Marrow Transplantation. The literature review showed that the 
integration of AI in the field of HCT has grown remarkably in the last 
decade and offers promising avenues in diagnosis and prognosis in 
HCT populations targeting both pre- and post-transplant challenges. 
Studies of AI integration in HCT have many limitations that include 
poorly tested algorithms, lack of generalizability, and limited use of 
different AI tools. Machine learning techniques in HCT are an intense 
area of research that needs much development and extensive support 
from hematology and HCT societies and organizations globally as we 
believe that this will be the future practice paradigm. 
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Introduction 

About sixty years ago, a Dartmouth conference established the 
basis of artificial intelligence (AI). The name was coined for the 
use of technology in accomplishing tasks that usually need 
human intelligence. These tasks include, but are not limited to, 
interpreting language, making decisions, and applying visual 
perception [1,2]. Soon after the conference, the AI field started 
to develop exponentially. One major example was the DENDRAL 
project of Stanford University that started in the early 1960s. 
DENDRAL used heuristic programming to provide solutions in 
the field of science [3]. 

Integration of AI in medicine started about a decade after 
the Dartmouth conference [1]. MYCIN was one of the early 
medical programs developed from DENDRAL to detect bacteria 
causing infections and to decide on appropriate antimicrobials 
and their doses. This program achieved a rate of agreement of 
60% when compared to decisions based on human expertise. 
Despite the suboptimal rate of agreement, it was able to cover 
all treatable pathogens and was showed to decrease the number 
of antimicrobials used [4]. This was followed by many other AI 
tools, such as Internist-I, that were developed to help medical 
practitioners [1,5].

The use of AI in medicine has led to a debate about how 
beneficial AI is in improving medical practice. Advocates of 
such integration list advantages such as increasing efficiency 
and helping medical practitioners to practice medicine in its 
real meaning. On the contrary, opponents of such integration 
cite different disadvantages that include concerns about 
the accuracy of these systems, the risk of having “deskilled” 
physicians, and fewer future jobs, especially in diagnostic 
medical fields such as radiology and pathology [6,7]. 

Despite the possible disadvantages and skepticism, the increasing 
complexity of medical practice and the opportunities provided 
by the advancements in AI make integration inevitable. Thus, 
growing numbers of projects have tried to integrate the tools 
that AI provides into different fields of medicine including 
hematology and oncology. Examples of integration are numerous. 
For instance, Watson for Oncology (WFO) is a project created by 
IBM Corporation that can cope with expanding evidence and 
learn from cases [8]. The project’s results are promising; for 
example, a 93% level of concordance was achieved by WFO when 
compared to physician-led tumor board decisions for breast 
cancer treatment plans. This level was even higher in stages II and 
III of breast cancer [9]. The use of AI in the fields of hematology 
and oncology is not limited to treatment decisions and plans. For 
example, different studies investigated the use of AI in leukemia 
diagnosis, management, and prognosis [10,11,12]. 

The field of hematopoietic cell transplantation (HCT) is 
expanding, with more than 60,000 procedures being performed 

annually worldwide [13]. It is also estimated that by 2020 the 
world will have half a million HCT survivors [14]. The rapid 
expansion of the field necessitates the augmenting of tools 
provided by AI to increase efficiency and improve patient care. 
Thus, this review aims to investigate the status of AI integration 
in the field of HCT and list some future directions and research 
agenda.

Methods 

The literature review used Boolean logic with terms including 
“Machine learning”, “Deep learning”, “Neural networks”, and 
“Artificial intelligence” in combination with terms specific 
to the field of HCT such as “Bone marrow transplant”, 
“Hematopoietic cell transplant”, “Graft-versus-host disease”, 
etc. The search targeted the last 10 years due to the growth of 
the AI field in hematology, oncology, and HCT. The following 
databases were used: Ovid MEDLINE, including In-Process and 
Other Non-Indexed Citations, and Google Scholar. Abstracts 
presented at the annual meetings of the American Society of 
Hematology (ASH), American Society for Blood and Marrow 
Transplantation (ASBMT), and European Society for Blood and 
Marrow Transplantation (EBMT) were screened as well to avoid 
file-drawer bias. The terms used to screen the abstracts were 
“Artificial intelligence” and “Machine learning”.

Results 

The number of abstracts of studies investigating the use of 
AI in the field of hematology has increased over the years. 
Figure 1 shows the number of abstracts presented in the field 
of AI in the meetings of three major hematological societies 
(ASH, ASBMT, and EBMT) from 2010 to 2017. It can be noted 
from the figure that the number of AI abstracts presented in 
these meetings increased 8 times between 2010 and 2017. This 
increase indicates the increasing focus on and advancements 
in potential uses of AI in hematology. On the other hand, the 
number of such abstracts presented in the field of HCT increased 
from none in 2010 to 5 in 2017. 

This literature search revealed many studies that investigated 
the use of AI tools in improving different aspects of HCT. These 
studies have targeted both pre- and post-transplant applications 
and are discussed below. 

Pre-transplant Applications 

Selection of donor and recipient pairs for HCT is a major 
challenge that could affect the prognosis of HCT recipients. 
An HLA-matched sibling can be found only in 30% of cases of 
HCT in the United States [15]. Lee et al. [16] found that one 
locus mismatch in donors can decrease 1-year survival to 43% 
from 52% in fully matched recipient-donor pairs, and this risk 
increases when more loci mismatches are present. Different 
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studies investigated the possible use of AI methods and tools 
to tackle this challenge. Marino et al. [17] identified 19 amino 
acid substitutions related to at least one bad outcome following 
HCT using random forest and logistical regression methods. 
These included overall survival, treatment-related mortality, 
incidence of graft-versus-host disease (GVHD), etc. However, 
none of these substitutions were able to pass the validation test 
in an independent cohort. This was also the case for a recent 
study by Buturovic et al. [18], in which different factors that 
included donor, recipient, and transplantation characteristics 
were used to create an algorithm using machine learning (ML). 
This algorithm aimed to increase survival of HCT recipients 
secondary to acute leukemia (AL) by improving the selection 
of donors. Despite optimistic preliminary results, the algorithm 
failed the validation study.

More methods have been proposed to develop algorithms that 
can help in the selection of donor-recipient pairs. For instance, 
two abstracts [19,20] proposed the use of different ML tools 
to aid this process. Sarkar and Srivastava [19] developed an 
algorithm that used both HLA and killer-cell immunoglobulin-
like receptor to improve the selection of donors for recipients 
with acute myelogenous leukemia (AML). The algorithm was able 
to increase the accuracy of predictions by 3%-4% compared to 
the usual analysis. Sivasankaran et al. [20] proposed a black-
box model in developing a system that uses secondary non-
HLA characteristics in selecting donors, though no data on the 
validation or improvement of accuracy have been reported to 
date. 

Post-transplant Applications 

Despite all the advances in HCT, recipients of HCT are at risk 
of many complications that might increase their mortality and 
morbidity, including GVHD [21,22]. Thus, predicting recipients’ 
risk of developing these complications and their prognosis 
would aid clinicians in making better decisions that would 
improve patients’ quality of life and survival. 

One of the major projects in this field is AL-EBMT. In 2015, the 
EBMT developed the AL-EBMT predictive model to stratify AL 
patients according to their prognosis following allogeneic HCT 
[23]. AL-EBMT (http://bioinfo.lnx.biu.ac.il/~bondi/web1.html) 
[24] was externally validated using an Italian transplantation 
network cohort [GITMO (Gitmo Onlus Gruppo Italiano Trapianto 
Midollo Osseo)]. The results showed that AL-EBMT was a valid 
tool in stratifying the risk of AL patients undergoing HCT. It was 
able to predict 100-day mortality, leukemia-free survival, 2-year 
overall survival, and non-relapse-related mortality with values 
of the area under the receiver operating curves ranging from 
0.651 to 0.698 [25]. However, the tool cannot be generalized to 
other non-European populations. 

Studies have also investigated the use of AI tools in predicting the 
outcomes of HCT. Li et al. [26] proposed using an AI approach in 
predicting allogeneic HCT outcome in AML and Myelodysplastic 
syndrome (MDS) by using pre-transplant minimal residual 
disease (MRD). MRD detection traditionally takes place using 
flow cytometry with physicians’ interpretations, and this leads to 
considerable variability in interpretations. The ML approach was 
applied to a training set and then confirmed using a validation 
set. The approach was found to differentiate between abnormal 
(MDS or AML) and normal cases by 90.8% in the training set and 
84.4% in the validation set. The system was also 100 times faster 
than experts in getting interpretations of results. 

Graft-Versus-Host-Disease

In addition to the use of AI approaches in diagnosis, Gandelman 
et al. [27] showed that ML tools offered a chance for classifying 
chronic GVHD into new phenotypes related to survival. However, 
this new classification system will need to be validated. 

Predicting the development of acute GVHD was investigated by 
Caocci et al. [28] in 78 thalassemia patients who underwent 
unrelated allogeneic HCT using artificial neural networks 
(ANNs). The ANN was compared to results acquired by logistical 
regression. The authors found that the ANN was significantly 
more sensitive in predicting acute GVHD in patients who 
developed it, but no difference was noted in predicting the 
absence of GVHD. This finding was supported by a recently 
presented EBMT abstract [29], which showed the superiority of 
ML models when compared to classical models such as logistical 
regression in predicting 100-day treatment-related mortalities 

Figure 1. Number of artificial intelligence (AI) abstracts presented 
at American Society of Hematology, American Society for Blood 
and Marrow Transplantation, and European Society for Blood 
and Marrow Transplantation meetings from 2010 to 2017. The 
number of AI abstracts presented at these meetings increased 8 
times during this time period, whereas the number of abstracts 
presented in the field of hematopoietic cell transplantation 
increased from none in 2010 to 5 in 2017. 

HCT: Hematopoietic cell transplantation.
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after allogeneic HCT. The literature search yielded very few 
technical studies that explored and compared methods to 
increase the accuracy of AI approaches and tools. 

Furthermore, few studies have indicated the limitations remaining 
or the methods that will help us to reach optimal use of ML. For 
instance, Shouval et al. [30] investigated the development of 
multiple models able to predict 100-day non-relapse mortality 
after HCT. Their findings suggested the need for broader data input 
from patients to be able to increase the predictive ability of models 
developed by AI, including biologic and genetic factors. Elhassan 
et al. [31] investigated the use of different sampling techniques 
to improve the accuracy of ML algorithms. They concluded that 
the use of sampling techniques, including random oversampling, 
synthetic oversampling, and remote undersampling, improved 
the accuracy of ML algorithms in predicting 100-day treatment-
related mortality in allogeneic HCT. 

Discussion 

The complexity of the healthcare system and the amount of 
medical literature and evidence have increased tremendously in 
the last few decades and it is nearly impossible for a practicing 
physician to keep up with all published literature, even in 
a narrow field of practice. This is accompanied by the need 
for more documentation, especially with the emergence of 
electronic medical records and electronic health records (EHRs). 
These electronic records may influence the effectiveness of 
medical practitioners and can make it difficult for physicians 
to practice the real meaning of medicine [32,33]. On the other 
hand, these tools have made it easier to reach patient data, 
especially in the case of EHRs. In the era of “big data”, EHRs 
act as sources of data that can be used to improve research 
and healthcare [34,35]. Moreover, data soon might be regional 
or even international with the help of registries [36]. Thus, 
EHRs and registries will provide AI systems with sets needed for 
training and validation. AI systems will also likely revolutionize 
EHRs to be more automated, thus giving medical practitioners 
more time to spend with their patients [6,14]. 

AI approaches using different tools might be an opportunity to 
use big data to extrapolate and create beneficial algorithms that 
can be applied for other patients. Despite the many advantages 
that can be provided by integrating AI in medicine, many 
disadvantages may also occur. These include endangering some 
types of medical jobs, possible technical errors, and deskilling 
[6,37]. Many of these disadvantages might be exaggerated as 
AI approaches are not alternatives but rather extensions of our 
currently used statistical tools [38]. These new approaches and 
tools will play a major role in the future of medicine. 

AI integration has been shown to be reliable, accurate, and 
promising in various instances. For instance, Weng et al. [39] 

used different ML approaches to create algorithms that can 
predict the risk of developing cardiac events within 10 years. AI 
approaches were found to be superior in predicting the risk of 
developing cardiac events compared to the established American 
College of Cardiology algorithm. WFO is another example of 
a project that holds a lot of potential for improving the care 
delivered to cancer patients [9]. Improvement in diagnosis and 
efficiency is also expected in diagnostic fields such as radiology 
[40]. The implementation of AI seems to be inevitable and more 
applications will soon be in practice. 

Moreover, future research is expected to develop more tools 
that have more ability in detecting patterns in unstructured 
and unsupervised data. The concurrent development of tools for 
data collection that is more instant and real-time is important 
to increase the amount of big data. This is evident in the parallel 
advancements in the field of the Internet of Things, which will be 
able to advance our methods in collecting data via connecting 
the various tools we use in clinical practice (e.g., wearables, 
thermometers, stethoscopes) directly to our EHRs and databases 
[41]. This will be an opportunity for us to use more real-time 
data that will help us to develop more accurate databases that 
can be later applied by the tools of AI. 

In this review, however, we demonstrate that the integration of AI 
in the field of HCT is still an area that needs much development. 
The published literature did not tackle many important 
aspects of HCT including survivorship, risk of infections, or 
pharmacogenomics. For instance, with the increasing number 
of HCTs done and improved management, it is expected that 
there will be half a million long-term HCT survivors by 2020 
[14,34]. Thus, AI offers a great opportunity to help provide these 
patients with optimal longitudinal care.

We have summarized many promising pre- and post-transplant 
studies of ML in HCT; however, these studies have many 
limitations. Most of these studies are still in a preliminary phase, 
a training set applied with a small sample size limits their power, 
and some of these studies have not confirmed their findings 
with a validation set. Other limitations include the need for 
technical studies that investigate the efficiency and accuracy 
of different AI methods and approaches. One of the concerns 
about using AI in the field of HCT and other medical fields is 
the generalizability of the systems. A system such as AL-EBMT 
[23] needs to be validated on other populations to be eligible 
for use. However, the horizon includes many opportunities, 
especially with the increase in the number of registries and 
data (e.g., CIBMTR, EBMT). Moreover, AI integration should be 
supported by HCT and hematology societies globally to ensure 
that AI applications are well validated and can be used. Given 
the presence of big data in international HCT registries, the HCT 
community can utilize ML technologies to its benefit to improve 
both patient outcomes and system efficiency. 
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AI integration in HCT is expanding and its role in daily activities 
of clinical practice is inevitable. It is time for our research and 
clinical community to step forward and incorporate ML usage 
with the existing models. Though this would be a cutting-
edge advancement, AI’s integration should be cautious and 
must target improvements in patient care rather than a focus 
on technological improvements. It should be incorporated in 
practice, but it should not take us away from the sine qua non 
of medicine as an oral science and our roles as healers. 

Conclusion and Future Directions 

Implementation of AI in HCT is still suboptimal. Future 
studies should try to involve more data for both training and 
validation sets. This necessitates more funding and support from 
different HCT and hematology societies globally as well as from 
government agencies. This support will allow AI tools to be of 
better quality and be generalizable. 

Integration of AI in medicine is inevitable. However, this 
integration should be cautious and well validated to improve 
patient care. Some concerns regarding AI use are valid and 
should be considered when using AI tools. The aim of AI should 
be to improve medical practice and healthcare.
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