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Abstract  Öz 

There are an increasing number of lightweight devices such as smart 
cards, radio frequency identification (RFID) tags, wireless sensor nodes 
and devices associated with the Internet of Things (IoT) concept, all of 
which need effective and lightweight security structures. One of the 
basic elements used in authentication protocols is the nonce values that 
are generated by PRNGs. Also random numbers are used for encryption 
process in secure communication. Proposed PRNG has demonstrated 
great suitability for devices with limited resources in terms of 
performance, resource usage and randomness. This generator is tested 
with NIST statistical test suite (NIST STS), which is one of the most 
comprehensive randomness test tools. It is also implemented, tested on 
wireless identification and sensing platform (WISP) passive RFID tag 
and compared with well-known PRNGs. As a result of the comparisons, 
it has better results than its rivals. 

 Akıllı kartlar, radyo frekansı tanımlama (RFID) etiketleri, kablosuz 
sensör düğümleri ve Nesnelerin İnterneti (IoT) konsepti ile ilişkili düşük 
kaynaklı cihazların sayısında artış olmaktadır. Kimlik doğrulama 
protokollerinde kullanılan temel öğelerden biri SRSÜ'ler tarafından 
üretilen nonce değerleridir. Ayrıca güvenli iletişimde şifreleme işlemi 
için rasgele sayılar kullanılır. Önerilen SRSÜ, sınırlı kaynaklara sahip 
cihazlarda performans, kaynak kullanımı ve rastlantısallık açısından 
uygunluk göstermiştir. Bu üreteç en kapsamlı rastgele sayı test 
araçlarından biri olan NIST istatistiksel test takımı (NIST STS) ile test 
edilmiştir. Ayrıca, kablosuz tanıma ve algılama platformu (WISP) pasif 
RFID etiketi üzerinde test edilmiş ve uygulanmış ve iyi bilinen SRSÜ'lerle 
karşılaştırılmıştır. Karşılaştırmalar sonucunda rakiplerinden daha iyi 
sonuçlar vermiştir. 

Keywords:, Internet of Things, Lightweight, Pseudo random number 
generator, Hardware random number generator, Hybrid random 
number generator, WISP, Security, xorshift, xorshiftL+, xorshiftUL+. 

 Anahtar kelimeler: Nesnelerin İnterneti, Hafif, Sözde rastgele sayı 
üreteci, Donanım rastgele sayı üreteci, Melez rastgele sayı üreteci, 
WISP, Güvenlik, xorshift, xorshiftL+, xorshiftUL+. 

1 Introduction 

In recent years, emerging technologies, such as smart cards, 
radio frequency identification tags (RFID), wireless sensor 
network (WSN) nodes and the concept of Internet of things 
(IoT) brought not only new solutions but also challenges in 
their scope of application. The proliferation of devices 
manipulating or transmitting sensitive and critical information 
requires more attention to security issues, because classical 
security algorithms cannot offer effective and feasible security 
solutions for these groups of devices. Thus, many lightweight 
cryptographic algorithms have been suggested in literature, 
including block ciphers [1]-[7], and hash functions [8]-[10]. The 
aim of lightweight security algorithms is to find a balanced 
solution for performance, speed and security needs taking into 
account limitations such as storage, and processing power.  

Random number generation has an important role in 
cryptography and authentication, and therefore, in security. 
These numbers can be used as the key or the seed for key 
generation in cryptographic algorithms and as nonce values in 
authentication protocols. For example, random numbers can be 
used as the secret keys for symmetric encryption algorithms 
such as advanced encryption standard (AES) and data 
encryption standard (DES). All these encryption algorithms and 
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authentication protocols need random number sequences 
generated with levels of high randomness to prevent attackers 
infiltrating the system. Generating these number sequences, 
requires a source called a random number generator (RNG). 
There are two types of RNGs based on their sources. True 
random number generators (TRNGs) which use hardware 
sources; and pseudorandom number generators (PRNGs), that 
use algorithms for generating random numbers or bit 
sequences [11]. Most PRNGs create random numbers more 
rapidly than TRNGs, and are suitable for stream ciphers. 
Moreover, well-designed PRNG algorithms can be easily 
implemented in lightweight devices. However, the generated 
number sequence can be predicted in PRNGs if both the 
algorithm and initial seed are known [12]. For this reason, 
PRNGs must be computationally secure and seeded by an 
unpredictable source. Thus, the two RNG types should be used 
together. A random number generated by a TRNG is used as the 
initial seed of a PRNG function. This type of random number 
generator can be called as hybrid random number generator 
(HRNG). HRNGs make a combination of PRNG (fast generation 
and high quality random numbers) seeded repeatedly by TRNG 
(high unpredictability but slow generation). HRNG design 
should resolve the challenge of the balance between speed and 
predictability [12]. 
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Ultra-light random number generators have been developed 
specifically for ultra-lightweight devices. These number 
generators have simple mathematical and bitwise operations 
(AND, OR, XOR and +). In this paper, a new, effective and ultra-
lightweight hybrid random number generator is proposed. The 
generator was implemented on wireless identification and 
sensing platform (WISP). This newly designed HRNG combines 
a TRNG that uses the temperature sensor with the newly 
designed PRNG, a light version of Marsaglia’s xorshift algorithm 
[13]. The PRNG is called the xorshiftUL+, with “UL” denoting 
“ultra-lightweight”. xorshiftUL+ is suitable for ultra-lightweight 
and lightweight devices such as IoT devices and RFID tags due 
to its randomness, performance and resource usage. 

WISP has 16-bit programmable microcontroller. It also has 
accelerometer, light sensor and temperature sensor as built-in 
physical sensors [14]-[16]. Unlike most of the other RFID tags, 
WISP family of devices are programmable. WISP 5, which is 
developed at the University of Washington laboratories, is used 
in this work for testing the performance and runtime of the 
hybrid generator [17]. 

Our contribution is an HRNG that uses a PRNG initialized by a 
chosen TRNG. This HRNG is ultra-lightweight, it is proposed 
and tested on WISP passive RFID tag. All random numbers 
created by this HRNG were tested by the NIST STS. 

The rest of this article is organized as follows. Section 2 
discusses previous and related works. In Section 3, details of 
material and methods used for proposed HRNG are given. 
Section 4 gives experimental results of performance, test, 
evaluation and discussions. Finally, the paper is concluded in 
Section 5.  

2 Related works 

The literature contains many solutions for random number 
generations, which are the main issues in the security of the 
lightweight and ultra-lightweight devices. Studies are currently 
focusing on ways to overcome these challenges using 
innovative solutions. In this study, we examined previous RNG 
implementations and their statistical and security properties. 

Avaroğlu et al. [18] proposed a new hybrid PRNG by means of 
an additional input introduced to transition and output 
functions used in a raw PRNG system in order to eliminate 
failure to meet the R4 security requirement. R4: following 
random numbers cannot be calculated if the internal state value 
is known or if it is possible to predict the internal state value 
even when it is not known [19]. The random number generator 
developed in this study uses AES and similar algorithms that 
are complex and resource intensive. Therefore, it will not be 
suitable for all lightweight devices. 

Avaroğlu [20] proposed a PRNG that uses two Arnold [21] cat 
map outputs. The output of this generator was tested with NIST 
STS and some other analytical tests. Author admitted that bit 
rate decreased after sampling. In the manuscript there is no test 
or information about if the generator is suitable for lightweight 
devices. 

Koyuncu and Özcerit proposed a study that presents a 
Sundarapandian–Pehlivan chaotic system's Xilinx Virtex-6 
FPGA implementation for TRNG. TRNG has a speed of 58.76 
Mbit/s. It was verified by NIST 800-22 standards and FIPS 140-
1 [22]. In the article there is no specific information about if it 
is suitable for lightweight devices such as RFID or IoT devices.  

Çabuk et al. [23] proposed a new PRNG by modifying well 
known xorshift algorithm called xorshiftR+, after developing 

many versions of the original xorshift128plus by changing 
parameters. Finally, three final versions were developed and 
compared. WISP passive RFID tag was used to implement these 
algorithms which were checked against electronic product code 
generation 2 (EPCGen2) standards, and the ENT, NIST 
statistical test suite (NIST STS) and TestU01 tests. After the 
tests, the authors selected the best of the three versions based 
on the test results, resource usage and performance. 

Kösemen at el. [24] developed a pseudorandom number 
generator by using genetic programming method. Genetic 
programming method uses Shannon entropy calculation for the 
fitness function. Mathematical and logical operators were used 
to generate a PRNG satisfying NIST STS tests and EPCGen2 
standards. 

Lawnik [25] used adequate chaotic transformation with 
uniform distribution and recommended a pseudo-random 
number generation method. This method changes continuous 
distributions into uniform distributions by flattening, allowing 
generation of pseudo-random numbers by continuous 
distribution. For the flattening process, it uses the frequency of 
the occurrence of successive chaotic transformation branches. 
Standard normal distribution example is used to analyze this 
method. In this paper, recommended PRNG was not tested with 
NIST STS. 

Rose made an [26] analysis about cryptographic quality of the 
KISS (‘Keep it Simple Stupid’) PRNG. Marsaglia and Zaman first 
specified KISS in 1993 [27] and Marsaglia published C code in 
1998. Some authors argued that KISS PRNG is 
cryptographically secure, although Marsaglia himself never 
claimed this. Rose showed that KISS PRNG does not meet 
certain cryptographically secure PRNG criteria, demonstrating 
that the initial state of the KISS PRNG can be recovered with 70 
output words, and takes about 2 hours depending on the 
computer hardware. Rose also pointed out that Marsaglia’s 
2011 version of KISS is vulnerable to divide-and-conquer 
attack, so KISS is not suitable for applications needing 
cryptographically secure generator. 

Alcin et al. proposed a high-speed chaotic true random number 
generator based on artificial neural network. They claimed that 
it generates random numbers that pass all randomness tests 
and this TRNG can be used in cryptographic and 
communication applications [28]. 

Rahmat et al. developed a hybrid pseudorandom generator 
using Vector algebra for a traditional game called Kuaci that 
was recently developed for Android systems. Milliseconds of 
the system clock were used as seeds [29]. The generator 
recommended in this application has not been tested by any 
statistical test such as Diehard or NIST.  

A circuit is implemented to generate random numbers on a 
highly efficient FPGA card that generates 32-bit random 
numbers operating at a frequency of 125 MHz by Devi et al. 
[30]. These random numbers were tested with Diehard and 
NIST. In this study there is no comparison against well-known 
RNGs according to performance and resource usage. 

3 Material and methods 

To develop a random number generator that is effective, secure 
and lightweight, it is important to be very familiar with the 
characteristics of both the hardware and the environment, and 
also, to create an effective algorithm that produces random bit 
sequences and seeds from the hardware sources. To achieve 
this, the temperature sensor on the WISP passive RFID tag has 
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been used to produce the initial seed. The production of this 
random number generator was made possible by exploiting the 
xorshift+ algorithm, which is lightweight in terms of resource 
utilization, and experiments were carried out until suitable 
results were obtained. Our proposed HRNG has a PRNG that is 
a member of “Mersenne Twister” (MT) [31], well-known 
feedback shift register superclass, and a TRNG that uses 
temperature sensor as the hardware source. 

3.1 Xorshift+ 

Using addition operation instead of using multiplication makes 
non-linear transformation faster. Saito and Matsumoto 
proposed this idea in their XSadd generator.  This generator 
adds two consecutive outputs of an underlying xorshift 
generator based on 32-bit shifts [32]. XSadd fails several 
BigCrush tests so Vigna introdued xorshift+ family. This family 
is based on 64-bit logical shift operations. For example, the code 
shown in Figure 1 belongs to xorshift128plus generator. It uses 
128 bits of state.  It is one of the well-known member of the 
xorshift+ family. 

 
Figure 1. xorshift128plus C implementation. 

3.2 WISP 

Wireless identification and sensing platform (WISP) is a passive 
RFID device with a microcontroller and sensors. WISP was first 
developed by Intel Research Seattle. Then studies continued at 
the Sensor Systems Laboratory of the University of Washington. 
It is a passive tag so doesn't have any built-in battery. Energy 
that is required for both powering the sensors and sending the 
response to the RFID reader was harvested from the radio 
signals sent by the RFID Reader. WISP can be the EPC Gen1 or 
Gen2 tag [33]. There is a 16-bit lightweight microcontroller on 
it. For example, Wisp 5.0 has Texas Instruments 
MSP430FR5969 microcontroller. This tag also includes 1 
accelerometer, 1 temperature sensor, analog digital converter 
(ADC) and 1 light emitting diode (LED). It has system clocks 
running on different frequencies. 

3.3 Methods 

Figure 2 shows the 16-bit true random number generation flow 
chart with a temperature sensor, and an ADC. The ADC 
produces 12-bit values. The least significant bit (LSB) of the 12-
bit values is set as the random number's first bit, and the 
random number is shifted logically to the left. 

i == 16

START

FINISH

RN = 0000000000000000

i = 0

YES

ADC 

(12bit)
RN(0)  = Sampled number's LSB

RN = RN << 1

i = i+1;

NO

1

2

3
Temperature

Sensor

Sampling from Temperature Sensor

 

Figure 2. True random number generator flow chart [34]. 

The process given in Figure 2 continues for 16 samplings, thus 
generating a 16-bit true random number. 16-bit true random 
number generation steps can be seen in Table 1.  

Table 1. A sample 16-bit true random number generation 
steps. 

i 
LSB of the sampled value from 

ADC 
RN16 

0 1 0000000000000001 
1 0 0000000000000010 
2 1 0000000000000101 
3 1 0000000000001011 
4 0 0000000000010110 
5 0 0000000000101100 
6 0 0000000001011000 
7 1 0000000010110001 
8 0 0000000101100010 
9 1 0000001011000101 

10 1 0000010110001011 
11 1 0000101100010111 
12 0 0001011000101110 
13 1 0010110001011101 
14 1 0101100010111011 
15 0 1011000101110110 

In the scope of our study, we changed the original xorshift128+ 
by random scramblings made by our predictions. We generated 
many PRNGs with fewer shift operations and shorter seeds 
compared with the original xorshift128+ and selected the one 
having the best NIST STS results. xorshiftL+ algorithm was 
presented in 2018. In that study, a lightweight HRNG called 
xorshiftL+ is mentioned. The authors claimed that this HRNG 
passes NIST STS tests [35]. We extended this study and made 
tests, comparisons. This newly created HRNG produces 32-bit 
random numbers. C programming language implementation of 
the proposed HRNG tested on WISP RFID is shown in Figure 3. 

 

Figure 3. xorshiftUL+ C implementation. 

Firstly, a 16-bit random number is generated by sampling from 
WISP's built-in temperature sensor. This number is given to 
PRNG as a seed. PRNG adds x and s values with mathematical 
addition operation and stores the result to y. Afterwards, x 
value is shifted to the left 3 times and this shifted value is taken 
into XOR operation with its previous status. The overall result 
is stored on x again. Then, the value of x is shifted 5 times to the 
right and 2 times to the right separately. s, x and these two new 
shifted values are all taken into XOR operation and the result is 
stored on x. As a result, the 𝑦 = 𝑠 + 𝑥 value in the first step is 
returned.  We want operations within the algorithm to change 
the y value in the next cycle so we return y value which is 
calculated in this first step. In this way, it will ensure 
randomness at every step.  

4 Experimental results and discussion 

In this section, the randomness of the numbers generated by 
the proposed random number generator is evaluated. NIST, and 
ENT tests results and EPCGen2 security requirements were 
examined and evaluated. At the same time, run time 
comparison on WISP passive RFID and the known rival 
algorithms were shared and evaluated. 
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4.1 NIST Results 

The new HRNG was tested using the well-known test suite, 
NIST STS, which has a battery of statistical tests, such as Rank, 
Runs, Serial, Frequency, FFT, etc. It makes 188 runs for 15 
different tests by running certain tests with different 
parameters [36]. In each round 64 million bits (2 million 32-bit 
numbers) are generated by the HRNG and tested with NIST STS. 
This is repeated tens of times. The output of the random 
number generator is well distributed statistically if it's serial 
correlation results are near zero and the output has high 
entropy. This and other properties ensure that the generator 
passes the NIST STS tests. NIST STS results show that the new 
HRNG is successful according to test results, and also that HRNG 
produces statistically random number sequences. NIST STS 
results of the one of the generated bit sequences are given in 
Table 2. Detailed NIST test results and generated random 
numbers can be seen on http://srg.cs.deu.edu.tr/publications/ 
2019/xorshiftULplus/index.htm. 

Table 2. NIST STS results for xorshiftUL+. 

Statistical Test P-Value Proportion 
Frequency 0.253551 1.000000 

BlockFrequency 0.011250 1.000000 
CumulativeSums(Average) 0.236986 1.000000 

Runs 0.148094 0.937500 
LongestRun 0.213309 1.000000 

Rank 0.671779 1.000000 
FFT 0.739918 1.000000 

NonOverlappingTemplate (Average) 0.427527 0.987542 
OverlappingTemplate 0.468595 1.000000 

Universal 0.407091 1.000000 
ApproximateEntropy 0.407091 0.906250 

RandomExcursions (Average) 0.178357 1.000000 
RandomExcursionsVariant (Average) 0.254208 1.000000 

Serial (Average) 0.264708 0.984375 
LinearComplexity 0.100508 1.000000 

The NIST test package contains 15 different tests based on 
hypothesis testing. These tests are designed to measure a 
specific Null hypothesis. It attempts to determine whether a 
sequence of zeros and ones is random. As a result of these tests, 
a probability value called p-value is calculated for each test. P-
value is compared with a level of significance (a) value. If p-
value > a, the generated sequence is considered statistically 
random. If p-value < a, the test will fail. This “a” value is selected 
in the range [0.001, 0.01]. So we can see that all tests are 
successful according to p-values. On the other hand, except for 
the random excursion (variant) test, proportion value for all 
tests should be at least 29 out of 32 (0.875). For random 
excursion (variant) test, this value should be at least 23 in 25 
(0.92). All proportion values are also successful for xorshiftUL+. 

4.2 Time and operator comparison results 

xorshiftUL+ was tested with NIST STS test suite and compared 
with well-known algorithms listed in Table 3. All of the 
algorithms ran on WISP and personal computer (PC). Table 3 
shows that xorshiftUL+ is the fastest on both WISP and PC. In 
the time evaluation of the xorshiftUL+ algorithm, only the PRNG 
time value is calculated and TRNG is excluded because it works 
once at the beginning of the algorithm to produce a seed, and 
the time required is negligible. xorshiftUL+ generates random 
numbers about 16.24% faster than the closest rival on WISP 
environment and about 15.05% faster on PC environment. It 
also outperforms the rival algorithms in terms of number of 
operators used and variable lengths. Compared with the 
xorshift128+ algorithm, it is seen that the operations in the 
xorshift128+ algorithm are performed on 64-bit length 

numbers. It is also observed that there are 1 mathematical 
addition operation, 23 logical left shifts, 23 logical right shifts 
and 4 XOR operations in this algorithm. Likewise, xorshift128+, 
all operations in the xorshiftR+ algorithm are 64 bits length 
variables. xorshiftR+ has 1 mathematical addition, 23 logical 
left shift, 17 logical right shift and 2 XOR operations. In our new 
proposed xorshiftUL+ algorithm, there are 1 mathematical 
addition, 3 logical left shifts, 7 logical right shifts and 4 XOR 
operations. This new algorithm has been developed to ensure 
the faster generation of numbers by applying less processing 
with 32 bit variables. 

Table 3. Time comparison with the known PRNG algorithms. 

PRNG algorithm 
Elapsed 
time on  

WISP (ms) 

Elapsed time 
on  

PC (ms) 

Uprng (1000 numbers generated) 35695 0.437100 
AKARI 1(1000 numbers generated) 39873 0.227833 
AKARI 2(1000 number generated) 25022 0.171398 
xorshiftL+(10000 number generated) 1934 0.023285 
xorshiftR+(10000 numbers generated) 2309 0.027410 
xorshift128+(10000 numbers generated) 3183 0.033485 
xorshift1024+(10000 numbers generated) 3307 0.043265 
xorshift64*(10000 numbers generated) 3868 0.040750 
xorshift1024*(10000 numbers generated) 4001 0.043925 
well1024(10000 numbers generated) 5242 0.041230 
LFSR113(10000 numbers generated) 6489 0.058850 
LFSR258(10000 numbers generated) 10545 0.134425 

4.3 EPCGen2 security requirements 

There are three conditions to satisfy security level that are 
specified by the EPCGen2 standard. These are: 

 Probability of a single RN16 shall be bounded by [37]: 

 
0.8

216
 <  P (RN16 = j))  <  

1.25

216
 

 This condition is met when maximum 10000 tags are 
considered and the condition is not dependent to the revival 
time of the tags. Generating same 16 bits random numbers 
shall have a probability less than 0.1% for two or much more 
tags, 

 To meet this condition a 16-bit random number is predicted 
with a probability not bigger than 25 × 10−3 % If the RNG’s 
outcomes of the prior draws, performed under identical 
conditions, are known. 

XorshiftUL+ was also checked for EPCGen2 standards that are 
given above. Three conditions of EPCGen2 standard as pointed 
out in the EPC™ Gen-2 Class 1 document [38] were examined, 
to ensure that it meets the RFID tags’ security standards. Firstly, 
we know that each 16-bit random number selected (RN16 16-
bit random number) from generated 230 numbers should have 

the probability of 
0.8

216  <  P (RN16 = j))  <  
1.25

216 . Proposed HRNG 

should satisfy this condition. We generated numbers and 
checked the result. xorshiftUL+ satisfies this condition with the 

probability of 
0.917

216  <  P (RN16 = j))  <  
1.048

216  for 230 numbers. 

Secondly, simultaneously identical sequences’ probability for 
10000 tags should be less than 0.1%. xorshiftUL+ has two 
inputs, and these two seeds are 32-bit integers, so calculating 

the probability as (
1

232)  × (
1

232)  = (
1

264), the result is [10000 ×

(
1

264)] × 100 = 5.42% × 10−18  < 0.1%, this condition is also 

satisfied. The final condition is that an RN16 drawn from a tag's 
RNG shall not be predictable with a probability greater than 
0.025%. This was proved using an ENT test suite detailed and 
defined on www.fourmilab.ch/random [39]. The detailed 
results and test parameters can be seen in Table 4. 
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Table 4: ENT test results for xorshiftUL+. 

Test 

(1st run seeds) (2nd run seeds) (3rd run seeds) 

x (int32_t) s (int32_t) x (int32_t) s (int32_t) x (int32_t) s (int32_t) 

1,976,529,755 -1,089,211,351 -2,112,299,155 438,506,025 154,5271,002 269,685,289 

Entropy 1.000000 bits/bit 1.000000 bits/bit 1.000000 bits/bit 

Compression Rate %0 %0 %0 

Χ2 Statistic 0.23 %62.84 1.56 %21.18 0.08 %78.22 

Arithmetic Mean 0.5001 0.4998 0.5000 

Monte Carlo π 3.158355158 (0.53% error) 3.160407160 (0.60% error) 3.157515158 (0.51% error) 

Serial Correlation 
Coefficient 

-0.005478 -0.005967 -0.005634 

The ENT test package performs some tests using the file 
including the numbers generated by the random number 
generators. The results of files produced with different seeds by 
xorshiftUL+ can be seen in Table 4. The entropy value of this 
test is maximum 1. This is because each character is 
represented by a single bit. Since the entropy value is close to 1, 
the compression ratio is also close to zero. These two values 
mean that the result is good.  

The result of the chi-square test is expected to be between 10% 
and 90%. As it shown in the table, these test results are also 
satisfactory.  

The perfect value for the arithmetic mean is 0.5. For 
xorshiftUL+, these values are very close to 0.5. Monte Carlo 
value should be close to Pi value. As we see in the table, the 
values are very close to the Pi value and the error percentage is 
low. 

The Serial correlation coefficient value that queries the 
relationship of a byte in a sequence with the previous bytes 
should be close to zero. It is not important whether this value is 
negative or positive. xorshiftUL+ produced close to zero output 
based on this test result. 

5 Conclusion 

This study presents a proposal for a solution for existing and 
pending security challenges on lightweight and ultra-
lightweight devices in consideration of resource and time 
constraints. New solutions are offered for random number 
generation which are the key points of security for lightweight 
devices. The WISP passive RFID tag confirming to EPC Gen2 
standard was used as the ultra-lightweight device to conduct 
tests and experiments. WISP has built-in sensors, 256-bit AES 
encryption and can be programmed, and so was selected for its 
high usability and applicability in the scope of future 
technologies. 

Marsaglia’s well-known Mersenne Twister based xorshift 
random number generator was modified to produce a new 
PRNG. To initialize the PRNG, WISP RFID tag’s temperature 
sensor was used to obtain a true random number by 
performing 16 temperature samplings in a cycle. Our newly 
created HRNG was proposed as a combination of a PRNG and a 
TRNG. The time required for random number generation using 
the HRNG was estimated and compared with some of the 
previous well-known random number generators shown in 
Table 3 in the previous section. A similar approach was taken 
to investigate whether the random number generator satisfies 
3 conditions for EPC™ Gen-2 Class 1 standards. Finally, the 

quality of the random number series generated by the HRNG 
was examined using the NIST STS.  These tests and evaluations 
revealed that the new HRNG satisfies 3 conditions for EPC™ 
Gen-2 Class 1 standards, passes all NIST STS tests and generates 
random numbers approximately 16% faster than the closest 
rival. 

For future works, xorshiftUL+ can be implemented on different 
IoT devices and the results investigated in terms of time, 
resource and performance requirements. 
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