

Pamukkale Univ Muh Bilim Derg, 26(5), 953-958, 2020

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

953

XorshiftUL+: A novel hybrid random number generator for internet of
things and wireless sensor network applications

XorshiftUL+: Nesnelerin interneti ve kablosuz duyarga ağı uygulamaları için
yeni bir melez rastgele sayı üreteci

Ömer AYDIN1* , Cem KÖSEMEN2

1,2Computer Engineering, The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Turkey.
omer.aydin@deu.edu.tr, cem.kosemen@bakircay.edu.tr

Received/Geliş Tarihi: 27.09.2019
Accepted/Kabul Tarihi: 09.01.2020

Revision/Düzeltme Tarihi: 07.12.2019 doi: 10.5505/pajes.2020.00344
Research Article/Araştırma Makalesi

Abstract Öz

There are an increasing number of lightweight devices such as smart
cards, radio frequency identification (RFID) tags, wireless sensor nodes
and devices associated with the Internet of Things (IoT) concept, all of
which need effective and lightweight security structures. One of the
basic elements used in authentication protocols is the nonce values that
are generated by PRNGs. Also random numbers are used for encryption
process in secure communication. Proposed PRNG has demonstrated
great suitability for devices with limited resources in terms of
performance, resource usage and randomness. This generator is tested
with NIST statistical test suite (NIST STS), which is one of the most
comprehensive randomness test tools. It is also implemented, tested on
wireless identification and sensing platform (WISP) passive RFID tag
and compared with well-known PRNGs. As a result of the comparisons,
it has better results than its rivals.

 Akıllı kartlar, radyo frekansı tanımlama (RFID) etiketleri, kablosuz
sensör düğümleri ve Nesnelerin İnterneti (IoT) konsepti ile ilişkili düşük
kaynaklı cihazların sayısında artış olmaktadır. Kimlik doğrulama
protokollerinde kullanılan temel öğelerden biri SRSÜ'ler tarafından
üretilen nonce değerleridir. Ayrıca güvenli iletişimde şifreleme işlemi
için rasgele sayılar kullanılır. Önerilen SRSÜ, sınırlı kaynaklara sahip
cihazlarda performans, kaynak kullanımı ve rastlantısallık açısından
uygunluk göstermiştir. Bu üreteç en kapsamlı rastgele sayı test
araçlarından biri olan NIST istatistiksel test takımı (NIST STS) ile test
edilmiştir. Ayrıca, kablosuz tanıma ve algılama platformu (WISP) pasif
RFID etiketi üzerinde test edilmiş ve uygulanmış ve iyi bilinen SRSÜ'lerle
karşılaştırılmıştır. Karşılaştırmalar sonucunda rakiplerinden daha iyi
sonuçlar vermiştir.

Keywords:, Internet of Things, Lightweight, Pseudo random number
generator, Hardware random number generator, Hybrid random
number generator, WISP, Security, xorshift, xorshiftL+, xorshiftUL+.

 Anahtar kelimeler: Nesnelerin İnterneti, Hafif, Sözde rastgele sayı
üreteci, Donanım rastgele sayı üreteci, Melez rastgele sayı üreteci,
WISP, Güvenlik, xorshift, xorshiftL+, xorshiftUL+.

1 Introduction

In recent years, emerging technologies, such as smart cards,
radio frequency identification tags (RFID), wireless sensor
network (WSN) nodes and the concept of Internet of things
(IoT) brought not only new solutions but also challenges in
their scope of application. The proliferation of devices
manipulating or transmitting sensitive and critical information
requires more attention to security issues, because classical
security algorithms cannot offer effective and feasible security
solutions for these groups of devices. Thus, many lightweight
cryptographic algorithms have been suggested in literature,
including block ciphers [1]-[7], and hash functions [8]-[10]. The
aim of lightweight security algorithms is to find a balanced
solution for performance, speed and security needs taking into
account limitations such as storage, and processing power.

Random number generation has an important role in
cryptography and authentication, and therefore, in security.
These numbers can be used as the key or the seed for key
generation in cryptographic algorithms and as nonce values in
authentication protocols. For example, random numbers can be
used as the secret keys for symmetric encryption algorithms
such as advanced encryption standard (AES) and data
encryption standard (DES). All these encryption algorithms and

*Corresponding author/Yazışılan Yazar

authentication protocols need random number sequences
generated with levels of high randomness to prevent attackers
infiltrating the system. Generating these number sequences,
requires a source called a random number generator (RNG).
There are two types of RNGs based on their sources. True
random number generators (TRNGs) which use hardware
sources; and pseudorandom number generators (PRNGs), that
use algorithms for generating random numbers or bit
sequences [11]. Most PRNGs create random numbers more
rapidly than TRNGs, and are suitable for stream ciphers.
Moreover, well-designed PRNG algorithms can be easily
implemented in lightweight devices. However, the generated
number sequence can be predicted in PRNGs if both the
algorithm and initial seed are known [12]. For this reason,
PRNGs must be computationally secure and seeded by an
unpredictable source. Thus, the two RNG types should be used
together. A random number generated by a TRNG is used as the
initial seed of a PRNG function. This type of random number
generator can be called as hybrid random number generator
(HRNG). HRNGs make a combination of PRNG (fast generation
and high quality random numbers) seeded repeatedly by TRNG
(high unpredictability but slow generation). HRNG design
should resolve the challenge of the balance between speed and
predictability [12].

mailto:omer.aydin@deu.edu.tr
mailto:cem.kosemen@bakircay.edu.tr
https://orcid.org/0000-0002-7137-4881
https://orcid.org/0000-0002-5410-9672

Pamukkale Univ Muh Bilim Derg, 26(5), 953-958, 2020
Ö. Aydın, C. Kösemen

954

Ultra-light random number generators have been developed
specifically for ultra-lightweight devices. These number
generators have simple mathematical and bitwise operations
(AND, OR, XOR and +). In this paper, a new, effective and ultra-
lightweight hybrid random number generator is proposed. The
generator was implemented on wireless identification and
sensing platform (WISP). This newly designed HRNG combines
a TRNG that uses the temperature sensor with the newly
designed PRNG, a light version of Marsaglia’s xorshift algorithm
[13]. The PRNG is called the xorshiftUL+, with “UL” denoting
“ultra-lightweight”. xorshiftUL+ is suitable for ultra-lightweight
and lightweight devices such as IoT devices and RFID tags due
to its randomness, performance and resource usage.

WISP has 16-bit programmable microcontroller. It also has
accelerometer, light sensor and temperature sensor as built-in
physical sensors [14]-[16]. Unlike most of the other RFID tags,
WISP family of devices are programmable. WISP 5, which is
developed at the University of Washington laboratories, is used
in this work for testing the performance and runtime of the
hybrid generator [17].

Our contribution is an HRNG that uses a PRNG initialized by a
chosen TRNG. This HRNG is ultra-lightweight, it is proposed
and tested on WISP passive RFID tag. All random numbers
created by this HRNG were tested by the NIST STS.

The rest of this article is organized as follows. Section 2
discusses previous and related works. In Section 3, details of
material and methods used for proposed HRNG are given.
Section 4 gives experimental results of performance, test,
evaluation and discussions. Finally, the paper is concluded in
Section 5.

2 Related works

The literature contains many solutions for random number
generations, which are the main issues in the security of the
lightweight and ultra-lightweight devices. Studies are currently
focusing on ways to overcome these challenges using
innovative solutions. In this study, we examined previous RNG
implementations and their statistical and security properties.

Avaroğlu et al. [18] proposed a new hybrid PRNG by means of
an additional input introduced to transition and output
functions used in a raw PRNG system in order to eliminate
failure to meet the R4 security requirement. R4: following
random numbers cannot be calculated if the internal state value
is known or if it is possible to predict the internal state value
even when it is not known [19]. The random number generator
developed in this study uses AES and similar algorithms that
are complex and resource intensive. Therefore, it will not be
suitable for all lightweight devices.

Avaroğlu [20] proposed a PRNG that uses two Arnold [21] cat
map outputs. The output of this generator was tested with NIST
STS and some other analytical tests. Author admitted that bit
rate decreased after sampling. In the manuscript there is no test
or information about if the generator is suitable for lightweight
devices.

Koyuncu and Özcerit proposed a study that presents a
Sundarapandian–Pehlivan chaotic system's Xilinx Virtex-6
FPGA implementation for TRNG. TRNG has a speed of 58.76
Mbit/s. It was verified by NIST 800-22 standards and FIPS 140-
1 [22]. In the article there is no specific information about if it
is suitable for lightweight devices such as RFID or IoT devices.

Çabuk et al. [23] proposed a new PRNG by modifying well
known xorshift algorithm called xorshiftR+, after developing

many versions of the original xorshift128plus by changing
parameters. Finally, three final versions were developed and
compared. WISP passive RFID tag was used to implement these
algorithms which were checked against electronic product code
generation 2 (EPCGen2) standards, and the ENT, NIST
statistical test suite (NIST STS) and TestU01 tests. After the
tests, the authors selected the best of the three versions based
on the test results, resource usage and performance.

Kösemen at el. [24] developed a pseudorandom number
generator by using genetic programming method. Genetic
programming method uses Shannon entropy calculation for the
fitness function. Mathematical and logical operators were used
to generate a PRNG satisfying NIST STS tests and EPCGen2
standards.

Lawnik [25] used adequate chaotic transformation with
uniform distribution and recommended a pseudo-random
number generation method. This method changes continuous
distributions into uniform distributions by flattening, allowing
generation of pseudo-random numbers by continuous
distribution. For the flattening process, it uses the frequency of
the occurrence of successive chaotic transformation branches.
Standard normal distribution example is used to analyze this
method. In this paper, recommended PRNG was not tested with
NIST STS.

Rose made an [26] analysis about cryptographic quality of the
KISS (‘Keep it Simple Stupid’) PRNG. Marsaglia and Zaman first
specified KISS in 1993 [27] and Marsaglia published C code in
1998. Some authors argued that KISS PRNG is
cryptographically secure, although Marsaglia himself never
claimed this. Rose showed that KISS PRNG does not meet
certain cryptographically secure PRNG criteria, demonstrating
that the initial state of the KISS PRNG can be recovered with 70
output words, and takes about 2 hours depending on the
computer hardware. Rose also pointed out that Marsaglia’s
2011 version of KISS is vulnerable to divide-and-conquer
attack, so KISS is not suitable for applications needing
cryptographically secure generator.

Alcin et al. proposed a high-speed chaotic true random number
generator based on artificial neural network. They claimed that
it generates random numbers that pass all randomness tests
and this TRNG can be used in cryptographic and
communication applications [28].

Rahmat et al. developed a hybrid pseudorandom generator
using Vector algebra for a traditional game called Kuaci that
was recently developed for Android systems. Milliseconds of
the system clock were used as seeds [29]. The generator
recommended in this application has not been tested by any
statistical test such as Diehard or NIST.

A circuit is implemented to generate random numbers on a
highly efficient FPGA card that generates 32-bit random
numbers operating at a frequency of 125 MHz by Devi et al.
[30]. These random numbers were tested with Diehard and
NIST. In this study there is no comparison against well-known
RNGs according to performance and resource usage.

3 Material and methods

To develop a random number generator that is effective, secure
and lightweight, it is important to be very familiar with the
characteristics of both the hardware and the environment, and
also, to create an effective algorithm that produces random bit
sequences and seeds from the hardware sources. To achieve
this, the temperature sensor on the WISP passive RFID tag has

Pamukkale Univ Muh Bilim Derg, 26(5), 953-958, 2020
Ö. Aydın, C. Kösemen

955

been used to produce the initial seed. The production of this
random number generator was made possible by exploiting the
xorshift+ algorithm, which is lightweight in terms of resource
utilization, and experiments were carried out until suitable
results were obtained. Our proposed HRNG has a PRNG that is
a member of “Mersenne Twister” (MT) [31], well-known
feedback shift register superclass, and a TRNG that uses
temperature sensor as the hardware source.

3.1 Xorshift+

Using addition operation instead of using multiplication makes
non-linear transformation faster. Saito and Matsumoto
proposed this idea in their XSadd generator. This generator
adds two consecutive outputs of an underlying xorshift
generator based on 32-bit shifts [32]. XSadd fails several
BigCrush tests so Vigna introdued xorshift+ family. This family
is based on 64-bit logical shift operations. For example, the code
shown in Figure 1 belongs to xorshift128plus generator. It uses
128 bits of state. It is one of the well-known member of the
xorshift+ family.

Figure 1. xorshift128plus C implementation.

3.2 WISP

Wireless identification and sensing platform (WISP) is a passive
RFID device with a microcontroller and sensors. WISP was first
developed by Intel Research Seattle. Then studies continued at
the Sensor Systems Laboratory of the University of Washington.
It is a passive tag so doesn't have any built-in battery. Energy
that is required for both powering the sensors and sending the
response to the RFID reader was harvested from the radio
signals sent by the RFID Reader. WISP can be the EPC Gen1 or
Gen2 tag [33]. There is a 16-bit lightweight microcontroller on
it. For example, Wisp 5.0 has Texas Instruments
MSP430FR5969 microcontroller. This tag also includes 1
accelerometer, 1 temperature sensor, analog digital converter
(ADC) and 1 light emitting diode (LED). It has system clocks
running on different frequencies.

3.3 Methods

Figure 2 shows the 16-bit true random number generation flow
chart with a temperature sensor, and an ADC. The ADC
produces 12-bit values. The least significant bit (LSB) of the 12-
bit values is set as the random number's first bit, and the
random number is shifted logically to the left.

i == 16

START

FINISH

RN = 0000000000000000

i = 0

YES

ADC

(12bit)
RN(0) = Sampled number's LSB

RN = RN << 1

i = i+1;

NO

1

2

3
Temperature

Sensor

Sampling from Temperature Sensor

Figure 2. True random number generator flow chart [34].

The process given in Figure 2 continues for 16 samplings, thus
generating a 16-bit true random number. 16-bit true random
number generation steps can be seen in Table 1.

Table 1. A sample 16-bit true random number generation
steps.

i
LSB of the sampled value from

ADC
RN16

0 1 0000000000000001
1 0 0000000000000010
2 1 0000000000000101
3 1 0000000000001011
4 0 0000000000010110
5 0 0000000000101100
6 0 0000000001011000
7 1 0000000010110001
8 0 0000000101100010
9 1 0000001011000101

10 1 0000010110001011
11 1 0000101100010111
12 0 0001011000101110
13 1 0010110001011101
14 1 0101100010111011
15 0 1011000101110110

In the scope of our study, we changed the original xorshift128+
by random scramblings made by our predictions. We generated
many PRNGs with fewer shift operations and shorter seeds
compared with the original xorshift128+ and selected the one
having the best NIST STS results. xorshiftL+ algorithm was
presented in 2018. In that study, a lightweight HRNG called
xorshiftL+ is mentioned. The authors claimed that this HRNG
passes NIST STS tests [35]. We extended this study and made
tests, comparisons. This newly created HRNG produces 32-bit
random numbers. C programming language implementation of
the proposed HRNG tested on WISP RFID is shown in Figure 3.

Figure 3. xorshiftUL+ C implementation.

Firstly, a 16-bit random number is generated by sampling from
WISP's built-in temperature sensor. This number is given to
PRNG as a seed. PRNG adds x and s values with mathematical
addition operation and stores the result to y. Afterwards, x
value is shifted to the left 3 times and this shifted value is taken
into XOR operation with its previous status. The overall result
is stored on x again. Then, the value of x is shifted 5 times to the
right and 2 times to the right separately. s, x and these two new
shifted values are all taken into XOR operation and the result is
stored on x. As a result, the 𝑦 = 𝑠 + 𝑥 value in the first step is
returned. We want operations within the algorithm to change
the y value in the next cycle so we return y value which is
calculated in this first step. In this way, it will ensure
randomness at every step.

4 Experimental results and discussion

In this section, the randomness of the numbers generated by
the proposed random number generator is evaluated. NIST, and
ENT tests results and EPCGen2 security requirements were
examined and evaluated. At the same time, run time
comparison on WISP passive RFID and the known rival
algorithms were shared and evaluated.

Pamukkale Univ Muh Bilim Derg, 26(5), 953-958, 2020
Ö. Aydın, C. Kösemen

956

4.1 NIST Results

The new HRNG was tested using the well-known test suite,
NIST STS, which has a battery of statistical tests, such as Rank,
Runs, Serial, Frequency, FFT, etc. It makes 188 runs for 15
different tests by running certain tests with different
parameters [36]. In each round 64 million bits (2 million 32-bit
numbers) are generated by the HRNG and tested with NIST STS.
This is repeated tens of times. The output of the random
number generator is well distributed statistically if it's serial
correlation results are near zero and the output has high
entropy. This and other properties ensure that the generator
passes the NIST STS tests. NIST STS results show that the new
HRNG is successful according to test results, and also that HRNG
produces statistically random number sequences. NIST STS
results of the one of the generated bit sequences are given in
Table 2. Detailed NIST test results and generated random
numbers can be seen on http://srg.cs.deu.edu.tr/publications/
2019/xorshiftULplus/index.htm.

Table 2. NIST STS results for xorshiftUL+.

Statistical Test P-Value Proportion
Frequency 0.253551 1.000000

BlockFrequency 0.011250 1.000000
CumulativeSums(Average) 0.236986 1.000000

Runs 0.148094 0.937500
LongestRun 0.213309 1.000000

Rank 0.671779 1.000000
FFT 0.739918 1.000000

NonOverlappingTemplate (Average) 0.427527 0.987542
OverlappingTemplate 0.468595 1.000000

Universal 0.407091 1.000000
ApproximateEntropy 0.407091 0.906250

RandomExcursions (Average) 0.178357 1.000000
RandomExcursionsVariant (Average) 0.254208 1.000000

Serial (Average) 0.264708 0.984375
LinearComplexity 0.100508 1.000000

The NIST test package contains 15 different tests based on
hypothesis testing. These tests are designed to measure a
specific Null hypothesis. It attempts to determine whether a
sequence of zeros and ones is random. As a result of these tests,
a probability value called p-value is calculated for each test. P-
value is compared with a level of significance (a) value. If p-
value > a, the generated sequence is considered statistically
random. If p-value < a, the test will fail. This “a” value is selected
in the range [0.001, 0.01]. So we can see that all tests are
successful according to p-values. On the other hand, except for
the random excursion (variant) test, proportion value for all
tests should be at least 29 out of 32 (0.875). For random
excursion (variant) test, this value should be at least 23 in 25
(0.92). All proportion values are also successful for xorshiftUL+.

4.2 Time and operator comparison results

xorshiftUL+ was tested with NIST STS test suite and compared
with well-known algorithms listed in Table 3. All of the
algorithms ran on WISP and personal computer (PC). Table 3
shows that xorshiftUL+ is the fastest on both WISP and PC. In
the time evaluation of the xorshiftUL+ algorithm, only the PRNG
time value is calculated and TRNG is excluded because it works
once at the beginning of the algorithm to produce a seed, and
the time required is negligible. xorshiftUL+ generates random
numbers about 16.24% faster than the closest rival on WISP
environment and about 15.05% faster on PC environment. It
also outperforms the rival algorithms in terms of number of
operators used and variable lengths. Compared with the
xorshift128+ algorithm, it is seen that the operations in the
xorshift128+ algorithm are performed on 64-bit length

numbers. It is also observed that there are 1 mathematical
addition operation, 23 logical left shifts, 23 logical right shifts
and 4 XOR operations in this algorithm. Likewise, xorshift128+,
all operations in the xorshiftR+ algorithm are 64 bits length
variables. xorshiftR+ has 1 mathematical addition, 23 logical
left shift, 17 logical right shift and 2 XOR operations. In our new
proposed xorshiftUL+ algorithm, there are 1 mathematical
addition, 3 logical left shifts, 7 logical right shifts and 4 XOR
operations. This new algorithm has been developed to ensure
the faster generation of numbers by applying less processing
with 32 bit variables.

Table 3. Time comparison with the known PRNG algorithms.

PRNG algorithm
Elapsed
time on

WISP (ms)

Elapsed time
on

PC (ms)

Uprng (1000 numbers generated) 35695 0.437100
AKARI 1(1000 numbers generated) 39873 0.227833
AKARI 2(1000 number generated) 25022 0.171398
xorshiftL+(10000 number generated) 1934 0.023285
xorshiftR+(10000 numbers generated) 2309 0.027410
xorshift128+(10000 numbers generated) 3183 0.033485
xorshift1024+(10000 numbers generated) 3307 0.043265
xorshift64*(10000 numbers generated) 3868 0.040750
xorshift1024*(10000 numbers generated) 4001 0.043925
well1024(10000 numbers generated) 5242 0.041230
LFSR113(10000 numbers generated) 6489 0.058850
LFSR258(10000 numbers generated) 10545 0.134425

4.3 EPCGen2 security requirements

There are three conditions to satisfy security level that are
specified by the EPCGen2 standard. These are:

 Probability of a single RN16 shall be bounded by [37]:


0.8

216
 < P (RN16 = j)) <

1.25

216

 This condition is met when maximum 10000 tags are
considered and the condition is not dependent to the revival
time of the tags. Generating same 16 bits random numbers
shall have a probability less than 0.1% for two or much more
tags,

 To meet this condition a 16-bit random number is predicted
with a probability not bigger than 25 × 10−3 % If the RNG’s
outcomes of the prior draws, performed under identical
conditions, are known.

XorshiftUL+ was also checked for EPCGen2 standards that are
given above. Three conditions of EPCGen2 standard as pointed
out in the EPC™ Gen-2 Class 1 document [38] were examined,
to ensure that it meets the RFID tags’ security standards. Firstly,
we know that each 16-bit random number selected (RN16 16-
bit random number) from generated 230 numbers should have

the probability of
0.8

216 < P (RN16 = j)) <
1.25

216 . Proposed HRNG

should satisfy this condition. We generated numbers and
checked the result. xorshiftUL+ satisfies this condition with the

probability of
0.917

216 < P (RN16 = j)) <
1.048

216 for 230 numbers.

Secondly, simultaneously identical sequences’ probability for
10000 tags should be less than 0.1%. xorshiftUL+ has two
inputs, and these two seeds are 32-bit integers, so calculating

the probability as (
1

232) × (
1

232) = (
1

264), the result is [10000 ×

(
1

264)] × 100 = 5.42% × 10−18 < 0.1%, this condition is also

satisfied. The final condition is that an RN16 drawn from a tag's
RNG shall not be predictable with a probability greater than
0.025%. This was proved using an ENT test suite detailed and
defined on www.fourmilab.ch/random [39]. The detailed
results and test parameters can be seen in Table 4.

Pamukkale Univ Muh Bilim Derg, 26(5), 953-958, 2020
Ö. Aydın, C. Kösemen

957

Table 4: ENT test results for xorshiftUL+.

Test

(1st run seeds) (2nd run seeds) (3rd run seeds)

x (int32_t) s (int32_t) x (int32_t) s (int32_t) x (int32_t) s (int32_t)

1,976,529,755 -1,089,211,351 -2,112,299,155 438,506,025 154,5271,002 269,685,289

Entropy 1.000000 bits/bit 1.000000 bits/bit 1.000000 bits/bit

Compression Rate %0 %0 %0

Χ2 Statistic 0.23 %62.84 1.56 %21.18 0.08 %78.22

Arithmetic Mean 0.5001 0.4998 0.5000

Monte Carlo π 3.158355158 (0.53% error) 3.160407160 (0.60% error) 3.157515158 (0.51% error)

Serial Correlation
Coefficient

-0.005478 -0.005967 -0.005634

The ENT test package performs some tests using the file
including the numbers generated by the random number
generators. The results of files produced with different seeds by
xorshiftUL+ can be seen in Table 4. The entropy value of this
test is maximum 1. This is because each character is
represented by a single bit. Since the entropy value is close to 1,
the compression ratio is also close to zero. These two values
mean that the result is good.

The result of the chi-square test is expected to be between 10%
and 90%. As it shown in the table, these test results are also
satisfactory.

The perfect value for the arithmetic mean is 0.5. For
xorshiftUL+, these values are very close to 0.5. Monte Carlo
value should be close to Pi value. As we see in the table, the
values are very close to the Pi value and the error percentage is
low.

The Serial correlation coefficient value that queries the
relationship of a byte in a sequence with the previous bytes
should be close to zero. It is not important whether this value is
negative or positive. xorshiftUL+ produced close to zero output
based on this test result.

5 Conclusion

This study presents a proposal for a solution for existing and
pending security challenges on lightweight and ultra-
lightweight devices in consideration of resource and time
constraints. New solutions are offered for random number
generation which are the key points of security for lightweight
devices. The WISP passive RFID tag confirming to EPC Gen2
standard was used as the ultra-lightweight device to conduct
tests and experiments. WISP has built-in sensors, 256-bit AES
encryption and can be programmed, and so was selected for its
high usability and applicability in the scope of future
technologies.

Marsaglia’s well-known Mersenne Twister based xorshift
random number generator was modified to produce a new
PRNG. To initialize the PRNG, WISP RFID tag’s temperature
sensor was used to obtain a true random number by
performing 16 temperature samplings in a cycle. Our newly
created HRNG was proposed as a combination of a PRNG and a
TRNG. The time required for random number generation using
the HRNG was estimated and compared with some of the
previous well-known random number generators shown in
Table 3 in the previous section. A similar approach was taken
to investigate whether the random number generator satisfies
3 conditions for EPC™ Gen-2 Class 1 standards. Finally, the

quality of the random number series generated by the HRNG
was examined using the NIST STS. These tests and evaluations
revealed that the new HRNG satisfies 3 conditions for EPC™
Gen-2 Class 1 standards, passes all NIST STS tests and generates
random numbers approximately 16% faster than the closest
rival.

For future works, xorshiftUL+ can be implemented on different
IoT devices and the results investigated in terms of time,
resource and performance requirements.

6 References
[1] Beaulieu R, Shors D, Smith J, Treatman-Clark S, Weeks B,

Wingers L. “The SIMON and SPECK families of lightweight
block ciphers”. 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), IEEE, San Francisco, CA, USA, 7-11 June
2015.

[2] Canniere C D, Dunkelman O, Kneˇzevi ć M. “KATAN and
KTANTAN–a family of small and efficient hardware-
oriented block ciphers”. Cryptographic Hardware and
Embedded Systems-CHES 2009, Springer, Lausanne,
Switzerland, 6-9 September 2009.

[3] Guo J, Peyrin T, Poschmann A, Robshaw M. “The led block
cipher”. 13th International Workshop Cryptographic
Hardware and Embedded Systems–CHES 2011, Nara, Japan,
28 September-1 October 2011.

[4] Gong Z, Nikova S, Law YW. KLEIN: A New Family of
Lightweight Block Ciphers. Editors: Juels A, Paar C. RFID
Security and Privacy Lecture Notes in Computer Science,
1-18, Berlin, Heidelberg, Germany, Springer, 2012.

[5] Knudsen L, Leander G, Poschmann A, Robshaw MJB.
“PRINTcipher: a block cipher for ic-printing”.
12th International Workshop Cryptographic Hardware and
Embedded Systems CHES 2010, Santa Barbara, USA,
17-20 August 2010.

[6] Shibutani K, Isobe T, Hiwatari H, Mitsuda A, Akishita T,
Shirai T. “Piccolo:an ultra-lightweight blockcipher”.
13th International Workshop Cryptographic Hardware and
Embedded Systems–CHES 2011, Nara, Japan,
28 September-1 October 2011.

[7] Wu W, Zhang L. “LBlock: a lightweight block cipher”.
International Conference on Applied Cryptography and
Network Security ACNS 2011: Applied Cryptography and
Network Security, Nerja, Spain, 7-10 June, 2011.

[8] Aumasson JP, Henzen L, Meier W, Naya-Plasencia M.
“Quark: a lightweight hash”. Journal of Cryptology,
26(2), 313-339, 2013.

Pamukkale Univ Muh Bilim Derg, 26(5), 953-958, 2020
Ö. Aydın, C. Kösemen

958

[9] Bogdanov A, Kneˇzevi ́c M, Leander G, Toz D, Varıcı K,
Verbauwhede I. “SPON-GENT: a lightweight hash
function”. International Workshop on Cryptographic
Hardware and Embedded Systems CHES 2011:
Cryptographic Hardware and Embedded Systems,
Nara, Japan, 28 September-1 October 2011.

[10] Guo J, Peyrin T, Poschmann A. “The PHOTON family of
lightweight hash functions”. 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, 14-18 August 2011.

[11] Turner N. “Software vs. Hardware RNG’s”. iGaming
Business Magazine 2 pp. Issue 55,
http://www.igamingbusiness.com/sites/default/files/fil
e/March_%20April%202009/28-29_Mar_Apr09.pdf
(16.06.2020).

[12] Fischer V, Bernard F. True Random Number Generators in
FPGAs. Editors: Badrignans B, Danger J, Fischer V, Gogniat
G, Torres L. Security Trends for FPGAS From Secured to
Secure Reconfigurable Systems, 101-135, Dordrecht,
Netherlands, Springer, 2011.

[13] Marsaglia G. “Xorshift RNGs”. Journal of Statistical
Software, 8(14), 1-6, 2003.

[14] Chae H, Salajegheh M, Yeager D, Smith J R, Fu K. Maximalist
Cryptography and Computation on the WISP UHF RFID tag.
Editors: Smith J R. Wirelessly Powered Sensor Networks
and Computational RFID, 175-187, New York, USA,
Springer, 2013.

[15] Sample A, Yeager D, Powledge P, Smith J. “Design of a
passively-powered, programmable sensing platform for
UHF RFID systems”. IEEE International Conference on
RFID, Grapevine, TX, USA, 26-28 March 2007.

[16] Smith J R, Sample A P, Powledge P S, Roy S, Mamishev A.
“A wirelessly-powered platform for sensing and
computation” UbiComp 2006: Ubiquitous Computing:
8th International Conference, Orange County, CA, USA,
17-21 September 2006.

[17] Wisp5. “Welcome to the WISP 5 Wiki!”.
http://wisp5.wispsensor.net/ (20.09.2019).

[18] Avaroğlu E, Koyuncu I, Özer AB, Türk M. “Hybrid pseudo-
random number generator for cryptographic systems”.
Nonlinear Dynamics, 82(1-2), 239-248, 2015.

[19] Koç ÇK. Cryptographic Engineering. New York, USA,
Springer, 2009.

[20] Avaroğlu E. “Pseudorandom number generator based on
Arnold cat map and statistical analysis”. Turkish Journal of
Electrical Engineering & Computer Sciences,
25(1), 633-643, 2017.

[21] Arnold VI Avez A “Problemes ergodiques de la mecanique
classique”. Science, 1968(159), 1344-1344, 1968.

[22] Koyuncu İ, Özcerit AT. “The design and realization of a
new high speed FPGA-based chaotic true random number
generator”. Computers & Electrical Engineering,
58, 203-214, 2017.

[23] Çabuk U C, Aydın Ö, Dalkılıç G. “A random number
generator for lightweight authentication protocols:
xorshiftR+”. Turkish Journal of Electrical Engineering &
Computer Sciences, 25(6), 4818-4828, 2017.

[24] Kösemen C, Dalkılıç G, Aydın Ö, “Genetic programming
based pseudorandom number generator for wireless
identification and sensing platform”. Turkish Journal of
Electrical Engineering & Computer Sciences,
26(5), 2500-2511, 2018.

[25] Lawnik M. “Generation of pseudo-random numbers with
the use of inverse chaotic transformation”. Open
Mathematics formerly Central European Journal of
Mathematics, 16(1), 16-22, 2018.

[26] Rose GG. “KISS: a bit too simple”. Cryptography and
Communications, 10(1), 123-137, 2018.

[27] Marsaglia G, Zaman A. “The KISS Generator”. Technical
Report, Department of Statistics, Florida State University,
Tallahassee, FL, USA, 1993.

[28] Alcin M, Koyuncu I, Tuna M, Varan M, Pehlivan I. “A novel
high speed Artificial Neural Network–based chaotic true
random number generator on field programmable gate
array”. International Journal of Circuit Theory and
Applications, 47(3), 365-378, 2019.

[29] Rahmat R F, Ramadhana S, Faza S, Fawwaz I, Nababan E
B. “Implementation of vector algebra and the hybrid
pseudo random number generator in android game of
kuaci”. Journal of Physics: Conference Series, 1235(1), 1-6,
2019.

[30] Devi DI, Chithra S, Sethumadhavan M. “Hardware random
number generator using FPGA”. Journal of Cyber Security
and Mobility, 8(4), 409-418, 2019.

[31] Matsumoto M, Nishimura T. “Mersenne twister: A 623-
dimensionally equi-distributed uniform pseudo-random
number generator”. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 8(1), 3-30, 1998.

[32] Saito M, Matsumoto M. "XORSHIFT-ADD (XSadd): A
variant of XORSHIFT". http://www.math.sci.hiroshima-
u.ac.jp/~m-mat/MT/XSADD/ (20.09.2019).

[33] Smith JR. History of the WISP Program. Editors: Smith JR.
Wirelessly Powered Sensor Networks and Computational
RFID, 13-29, New York, NY, USA, Springer, 2013.

[34] Dalkılıç G. “Radyo frekansı ile tanımlama etiketleri için
gerçek rastgele sayı tabanlı üreteç”. Dokuz Eylül
Üniversitesi Fen ve Mühendislik Dergisi, 18(54),
640-651, 2016.

[35] Aydın Ö, Dalkılıç G. “A hybrid random number generator
for lightweight cryptosystems: Xorshiftlplus”.
3rd International Conference on Engineering Technology
and Applied Sciences (ICETAS), Skopje, Macedonia,
17-21 July 2018.

[36] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S,
Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S. “A
statistical test suite for random and pseudorandom
number generators for cryptographic applications”.
https://doi.org/10.6028/NIST.SP.800-22r1a
(30.04.2010).

[37] Peris-Lopez P, Hernandez-Castro J C, Estevez-Tapiador J
M, Ribagorda A. “LAMED-a PRNG for EPC class-1
generation-2 RFID specification”. Computer Standards &
Interfaces, 31(1), 88-97, 2009.

[38] EPCGlobal GS1. “EPC™ Radio-Frequency Identity
Protocols Generation-2 UHF RFID Specification for RFID
Air Interface Protocol for Communications at 860 MHz–
960 MHz version 2.0.1 ratified”.
https://www.gs1.org/sites/default/files/docs/epc/Gen2
_Protocol_Standard.pdf (30.09.2019).

[39] Walker J. “ENT-A Pseudorandom Number Sequence Test
Program”. http://www.fourmilab.ch/random/
(30.09.2019).

