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Abstract  Öz 

The active sub-network detection aims to find a group of interconnected 
genes of disease-related genes in a protein-protein interaction network. 
In recent years, several algorithms have been developed for this 
problem. In this study, the analysis of disease-specific sub-network 
identification programs is evaluated using epilepsy data set. Under the 
same conditions and with the same data set, 9 different programs are 
run and results of their Greedy algorithm, Genetic algorithm, Simulated 
Annealing Algorithm, MCC (Maximal Clique Centrality) algorithm, 
MCODE (Molecular Complex Detection) algorithm, and PEWCC (Protein 
Complex Detection using Weighted Clustering Coefficient) algorithm 
are shown. The top-scoring 5 modules of each program, are compared 
using fold enrichment analysis and normalized mutual information. 
Also, the identified subnetworks are functionally enriched using a 
hypergeometric test, and hence, disease-associated biological pathways 
are identified. In addition, running times and features of the programs 
are comparatively evaluated. 

 Aktif alt ağ tespiti, bir protein-protein etkileşim ağında hastalıkla ilgili 
genlerin birbirine bağlı bir grup genini bulmayı amaçlamaktadır. Son 
yıllarda bu problem için çeşitli algoritmalar geliştirilmiştir. Bu 
çalışmada, hastalığa özgü alt ağ tanımlama programlarının analizleri 
epilepsi veri seti kullanılarak değerlendirilmiştir. Aynı koşullar altında 
ve aynı veri seti ile 9 farklı program çalıştırılmış ve bu programların 
Greedy algoritması, Genetik algoritma, Simüle Tavlama Algoritması, 
MCC (Maximal Clique Centrality) algoritması, MCODE (Molecular 
Complex Detection) algoritması ve PEWCC (Protein Complex) Ağırlıklı 
Kümeleme Katsayısı) algoritması sonuçları gösterilmiştir. Her 
programın en yüksek puan alan 5 modülü, kat zenginleştirme analizi ve 
normalleştirilmiş karşılıklı bilgi kullanılarak karşılaştırılmıştır. Aynı 
zamanda tanımlanan alt ağlar, hipergeometrik test kullanılarak 
fonksiyonel olarak zenginleştirilmiş ve hastalıkla ilişkili biyolojik yollar 
belirlenmeye çalışılmıştır. Ayrıca programların çalışma süreleri ve 
özellikleri karşılaştırmalı olarak değerlendirilmiştir. 

Keywords: Protein-Protein interaction networks, Active sub-
network search, Functional enrichment analysis, Fold enrichment,  
Normalized mutual information. 

 Anahtar Kelimeler: Protein-Protein etkileşim ağları, Aktif alt-ağ 
araması, Foksiyonel zenginleştirme analizi, Kat zenginleştirme,  
Normalleştirilmiş karşılıklı bilgi. 

1 Introduction 

Understanding life's secrets have always been a key problem on 
which several disciplines have collaborated. Bioinformatics and 
genomics are fields of study that look into the secrets of life 
using biological data. The link between diseases in an organism 
and the causative gene or mutations can be established via 
bioinformatics analysis. Scientists can perform disease 
predictions and evolutionary processes of disease by applying 
these analyses to -omics or GWAS data. As a result, by 
developing personalized medication and treatment, a disease 
can be prevented, and its effects can be reduced before it poses 
a serious hazard. Epilepsy is a serious and prevalent 
neurological disease that is linked to psychiatric comorbidities. 
The number of persons suffering from epilepsy has risen to 65 
million all over the world. Despite the discovery of numerous 
anti-epilepsy treatments, roughly 30% of patients cannot be 
cured or show no response to treatments due to the 
development of pharmacoresistance during therapy [1]. So, 
novel and effective treatments based on the pathogenesis of 
epilepsy are urgently needed. In order to develop a new and 
effective treatment, first of all, it is necessary to determine 
whether there are genes responsible for this disease. If there is, 
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the relationship between these genes and the disease should be 
examined. For this purpose, computational analyzes are 
performed. One of such analyzes is the search for active 
modules containing disease-specific proteins using the 
information from high throughput methods performed in the 
wet laboratory, e.g., microarray studies, RNA-seq, genome-wide 
association studies (GWAS). 

Protein-protein interaction (PPI) networks present the 
interactions among proteins, based on their operation in the 
cell. In these PPI networks, the active module search aims to 
find disease-related subnetworks that contain most of the 
highly affected nodes (proteins) and their interaction partners 
with medium effect on the disease [2]. The active subnetwork 
search problem requires two main inputs, i) protein-protein 
interaction network, ii) node scores of proteins that indicate 
the statistical significance of a protein for the disease under 
investigation [3]-[5]. Most methods often use undirected 
graphs of protein-protein interaction networks and the node 
scores are used as the weight of the nodes. Via defining a score 
for a subnetwork, the search step of active subnetwork search 
tries to find the sub-network with the maximum score [6]. The 
active subnetwork search is an NP-hard problem and many 
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methods have been developed especially focusing on the search 
step. In this study using epilepsy-related GWAS dataset; 
performance results of Greedy algorithm, Genetic algorithm, 
Simulated Annealing Algorithm, MCC (Maximal Clique 
Centrality) algorithm, MCODE (Molecular Complex Detection) 
algorithm, and PEWCC (Protein Complex Detection using 
Weighted Clustering Coefficient) algorithm are compared. The 
names of programs used are as follows; jActiveModules [7], 
PINBPA [8], MCODE [9], PEWCC [10], ActiveSubnetworkGA 
[11], ClusterViz [12], CytoHubba [13], CytoMOBAS [14] and 
PathFindR [15]. Results are evaluated using functional 
enrichment analysis using BINGO [16], fold enrichment 
analysis [17], and normalized mutual information [18],[19]. In 
our previous work, GO enrichment analysis results of programs 
are shown in detail [20]. The operation requirements and the 
parameters of each active module search program are different. 
We also reviewed SubNet [21], MSIGNET [22], CytoGTA [23], 
BMRF-Net [24], dmGWAS [25], COSINE [26], Prize-Collecting 
Steiner Forest [27] and MAGENTA [28] programs. Different 
input parameters are required in each program according to 
the data set used, hence these programs are not included in this 
study but for different data sets, these programs are among the 
most used. The above-mentioned analysis is summarized in 
Figure 1. 

 

Figure 1. Shows the summary processing of our work. 

2 Methods 

2.1 Datasets 

A human protein-protein interaction network and epilepsy-
related GWAS dataset [29] are used to run all sub-network 
search programs in this study. The PPI network dataset 
[30],[31] contains 10175 different genes, while the GWAS 
dataset includes 4494 epilepsy-related genes and their 
importance scores. 224 genes related to idiopathic generalized 
epilepsy (IGE) are obtained from DISEASE [32] database and 
used as reference genes in fold enrichment analysis. 

2.2 Sub-Network search programs 

In this section, the active subnetwork search programs that are 
compared in this study are briefly introduced with their basic 
features. All programs are Cytoscape [33] plugins except 
ActiveSubnetworkGA and PathFindR. 

2.2.1 jActiveModules 

This method is the pioneer of subnetwork search algorithms 
and combines statistical measurements with a search algorithm 
to find high-scoring modules. jActiveModules firstly calculates 
a z-score and uses this score in the search step based on 
simulated annealing and genetic algorithms. The purpose of the 
simulated annealing algorithm is to search for the highest-
ranked subnetwork, and the greedy search expands a 

subnetwork by adding one of its adjacent genes to maximize a 
feature based on mutual information.  In our study, we ran this 
program with the simulated annealing algorithm with its 
default parameters. 

2.2.2 PINBPA (Protein interaction network-based 
pathway analysis) 

This method is the first Cytoscape app intended to analyze 
GWAS information on the network. It provides an easy interface 
for a complicated set of analyzes and can be used in a broad 
variety of situations, enabling genomic researchers to conduct 
post-GWAS analyzes in a simplified, thorough, and 
reproducible manner. The program works with a greedy 
algorithm and it has six basic steps for the analysis, i.e., building 
a manhattan chart, sequencing the coordinates of all genes, 
generating the subnetworks of first-order networks based on 
the threshold value, checking the statistical importance test of 
subnetworks, applying the restart algorithm and identifying 
modules that enriched with important genes using z-scores. 

2.2.3 MCODE (Molecular complex detection) 

The MCODE detects tightly linked areas in big networks of 
protein-protein interaction that can represent molecular 
complexes. The technique is based on vertex weighting from a 
locally dense seed protein by local neighborhood density and 
outward traversal to isolate the thick areas according to 
specified parameters. The algorithm has the benefit over other 
graph clustering techniques of having a guided mode that 
enables cluster fine-tuning of interest without considering the 
remainder of the network and enables cluster interconnectivity 
to be examined, which applies to protein networks. It consists 
of three stages: peak weight, complex estimation, and 
optionally post-treatment. 

2.2.4 PEWCC (Protein complex detection using weighted 
clustering coefficent) 

The method is a novel mining algorithm for identifying groups 
such as protein complexes. First, the algorithm evaluates the 
accuracy of interaction information and then predicts protein 
complexes based on the weighted clustering coefficient idea.  
This method can be used for all kinds of diseases. PEWCC first 
assesses the reliability of protein interaction data using the PE 
measure which is a new measure to protein pairs interaction 
reliability then it detects protein complexes using a weighted 
aggregation coefficient. 

2.2.5 ActiveSubnetworkGA 

The method is a novel genetic algorithm technique in that 
crossover branch swapping, individual addition mutation, 
pruning, and two-stage architecture are introduced. It is similar 
to jActiveModules, but the search step using a genetic algorithm 
is more advanced. The goal of the method is to get the best 
solution which refers to a subnetwork with the maximum score. 
The algorithm is executed up to the threshold value specified 
by the user. The best solutions are identified as the first 
population and the genetic algorithm is run once again for best 
results. Good solutions are combined with branch swapping 
crossover. 

2.2.6 ClusterViz 

This method is used to find extremely interconnected areas, 
protein complexes, or functional modules in a network. To do 
more associated studies, ClusterViz fascinates the comparison 
of the outcomes of distinct algorithms.  It has three clustering 
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algorithms, i.e., FAG-EC (fast agglomerate algorithm based on 
the edge clustering coefficients), EAGLE and MCODE. In our 
study, ClusterViz runs with FAG-EC algorithm. Since the edge 
clustering coefficient is local variables, FAC-EC has a low time 
complexity and can handle large PPI networks. 

2.2.7 CytoHubba 

The method provides eleven different topological analysis 
methods. It is possible to divide eleven techniques into two 
main classifications as local and global methods. A local rank 
method only looks at the relationship between the node and its 
direct neighbors to calculate the score of a node within a 
network vice versa the global method looks at the relationship 
between the node and all networks.  Among the eleven different 
analysis methods, the MCC (Molecular Complex Detection) has 
the best performance in predictive accuracy so, in this study, we 
preferred to use the MCC method. 

2.2.8 CytoMoBAS 

The main concept of the suggested technique is to evaluate the 
association of each interaction with the disease in the network 
and to take into consideration the association of background 
disease as an approximation for statistical significance. The 
CytoMoBAS proposes a scoring system that integrates 
parameter-free disease connection and network connectivity. It 
includes an approximation of the statistical importance of this 
integrated score. 

2.2.9 PathFindR 

The pathfindR is a tool that uses active subnetworks to analyze 
pathway enrichment. It defines gene sets forming active 
subnetworks in a network of protein-protein interactions using 
the user's list of genes. It conducts pathway enrichment 
analysis on the gene sets which are recognized. It also maps 
user information on the enhanced pathways using the R 
package pathview and makes path diagrams together with the 
mapped genes. Since many of the enhanced pathways are 
generally biologically linked, pathfindR also provides features 
for clustering these pathways and identifying representative 
pathways in clusters. This program has three search 
algorithms, i.e., greedy, simulated annealing, and genetic 
algorithm and its scoring scheme is based on the z-score. In this 
study, pathFindR is run with each algorithm. 

2.3 Functional enrichment analysis 

After the identification of the highest-scoring active sub-
networks, interpretation of results from a biological 
perspective is very important. Functional Enrichment Analysis 
is a common technique used to show whether this sub-network 
is biologically meaningful [34],[35]. In this technique, using 
hypergeometric test and Bonferroni correction, the set of 
identified genes in the subnetwork are compared with the set 
of genes that are known to be part of a biological pathway or a 
Gene Ontology (GO) term. Hence, the biological relevance of the 
identified sub-network in terms of disease development is 
assessed. In this study, a widely used functional enrichment 
program, BINGO is used. GO terms including BP (Biological 
Process), MF (molecular function), and CC (Cellular 
Component) are preferred for functional enrichment due to our 
data set. 

2.4 Fold enrichment 

Another method used to interpret active sub-network search 
program results is Fold Enrichment. This test is important to 

find the overlap rate between the identified subnetworks and 
the reference dataset [17]. In this study, the reference set is 
selected as the idiopathic generalized epilepsy genes, known in 
the literature. Fold enrichment is calculated as in (Eq 1); 

A= Total number of genes overlapped in the current 
module with reduced reference data set that consists 
of reducing repetitive genes to a single gene, 

B= Total number of nodes in the reduced protein-protein 
interaction dataset that consists of reducing repetitive 
genes to a single gene, 

C= Total number of genes overlapped in the reduced 
protein-protein interaction dataset and reduced 
reference dataset, 

D= Total number of nodes in the modüle. 
 

𝐹𝑜𝑙𝑑𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
A .  𝐵
𝐶 .  𝐷

  (1) 

 

Our protein-protein interaction network includes 10175 nodes 
(proteins). The reference data set contains 224 proteins 
associated with IGE and 151 of these proteins exist in the PPI 
network. So, in our study, (Eq 1) is replaced with (Eq 2). 

𝐹𝑜𝑙𝑑𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
A .   10175

151 .   𝐵
 (2) 

2.5 Normalized mutual information (NMI) 

As a performance measure for assessing the predicted modules 
of the sub-network search algorithms, we are using the 
normalized-mutual information (NMI). The NMI is important 
because it gives information about the consistency of the 
results between different methods vice versa it does not allow 
to get an idea of the absolute quality of the identified 
subnetworks [18],[19]. 

Let us show two of the subnetwork identification methods with 
U and V. Let’s assume that these methods predict |R| and |C| 
subnetworks and that the common protein numbers within 
these identified subnetworks are shown in Table 1. 

Table 1. A contingency table which defines the overlap 
between two methods, U and V. 

U/V V1...V2...VC SUMs 
U1 N11…n12…n1c a1 
U2 N21…n22…n2c a2 
. . . 
. . . 
. . . 

UR nR1…nR2…nRC aR 
SUMs b1…b2bc N 

i.e., the second subnetwork of U method U2 and the first 
subnetwork of V method V1 share n21 common proteins. 

The normalized mutual information is calculated as shown in 
(Eg 6) using (Eg 3), (Eg 4), and (Eg 5) [36]. 

𝐻(𝑈) = −∑
ai
N
(log

ai
N
)

R

i=1

 (3) 

𝐻(𝑉) =∑
𝑏i
N
(log

𝑏i
N
)

𝐶

i=1

 (4) 
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𝐼(𝑈, 𝑉) = ∑∑
𝑛ij

N
(log

𝑛𝑖𝑗
𝑁⁄

𝑎𝑖𝑏𝑗
𝑁2⁄

)

𝐶

j=1

R

i=1

 (5) 

𝑁𝑀𝐼 =
𝐼(𝑈, 𝑉)

𝐻(𝑈) + 𝐻(𝑉)
 (6) 

Via normalizing the calculated mutual information, the NMI 
value is converted to a range of [0, 1]. While the value zero in 
NMI indicates that the subnetworks identified by the related 
methods are independent of each other, the value one in NMI 
indicates that the subnetworks identified by two different 
methods are the same with each other. 

3 Results 

In this study, nine different active subnetwork search programs 
are comparatively evaluated using an epilepsy-associated 
GWAS data set to help understand the underlying mechanism 
of this disease. The evaluated programs are jActiveModules, 
ActiveSubnetworkGA, ClusterViz, PINBPA, MCODE, PEWCC, 
CytoHubba, CytoMOBAS, and PathFindR. As shown in Table 2, 
most of these programs are implemented in Java and most of 
them have GUI support using Cytoscape and R-studio. Also in 
Table 2, the algorithms shown in dark are used in this study. 
The running time results of programs are shown in Table 3, and 
they are obtained using an HP-TPN-C129 computer. Any 
applications were blocked from running in the background 
while a program was run.  All programs run with their default 
parameters except CytoHubba. In CytoHubba only Top 50 
node(s) are ranked by MCC. As a result the programs running 
stage, we compared the obtained modules according to certain 
criteria and made inferences about which active subnet 
program could be more efficient for epilepsy disease. In terms 
of running time, pathFindR has the best performance (the 
average running time of its three different algorithms), as 
shown in Table 3. For this reason, data sets with big data input 
and parameters suitable for the program, pathFindR should be 
preferred. After the running stage is completed, functional 
enrichment analysis is applied on the modules which have the 
maximum score of each program (one module is selected for 
each program) and reference data set. The aim of this analysis 
is to measure the importance of the identified sub-networks, 
and to compare the set of identified genes with the set of genes 
that are known to be part of a biological pathway. In another 

sense, using GO terms, the biological relevance of the identified 
sub-network in terms of disease development can be assessed. 
If diversity and accuracy of this obtained biological relevance 
increase, also treatment options developed for the epilepsy 
disease increases. For these reasons, the identification of 
different types of GO terms is critical for understanding disease 
biological mechanisms and inferring gene function. Figure 2 
shows the total number of GO terms of the modules and the 
reference data set. According to Figure 2. ActiveSubnetworkGA 
has the highest value with 1116 different GO terms so it can 
identify the different types of the GO Terms for the top-scoring 
subnetworks. 

 

Figure 2. Number of the GO Terms identified for the top-
scoring subnetworks of different algorithms. 

As the third and fourth stage, fold enrichment and normalized 
mutual information analysis are performed for each program. 
In this respect, five modules that have the highest score of each 
program are selected to set a common input limit and to obtain 
meaningful results. Using fold enrichment analysis, we wanted 
to find overlapping rates between the selected subnetworks 
which are outputs of programs, and the reference dataset (224 
genes) which is called idiopathic generalized epilepsy. For 
every five subnetworks of programs, fold enrichment results 
are computed and as a result, the average value is shown in 
Figure 3. The CytoMoBAS has the highest fold enrichment 
result. This result means that the subnetworks defined by 
CytoMoBAS overlap the reference dataset more than the 
subnetworks of other programs. 

 

Table 2. Features of the sub-network identification programs. 

Programs Programming Languages Interface Algorithms 

PINBPA Java Cytoscape Greedy Algorithm (GR) 

CytoMOBAS Java Cytoscape Greedy Algorithm (GR) 

PathFindR Java or R Command-Line or R-
Studio 

Genetic (GA), Simulated Annealing (SA) and Greedy Algorithm 
(GR) 

PEWCC Java  Cytoscape PEWCC 
jActiveModules Java Cytoscape Simulated Annealing (SA) and Genetic Algorithm (GA) 

MCODE Java Command-Line or R-
Studio 

MCODE 

CytoHubba Java Cytoscape 11 different topological analysis methods. 

MCC 
ActiveSubnetworkGA Java Command Line Genetic Algorithm (GA) 

ClusterViz Java Cytoscape FAG-EC, EAGLE, and MCODE 

Note: All programs run with their default parameters except CytoHubba. In CytoHubba Top 50 node(s) are ranked by MCC. To to run all sub-network search programs, 
a human PPI network and epilepsy-related GWAS dataset are used. 
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Table 3. Running time analyzes of the compared subnetwork identification programs based on hrs:mins:sec. 

Programs-Algorithms Running Times 

PINBPA-GR 05:16:03 
CytoMOBAS-GR 08:40:19 

PathFindR-GA/GR/SA 00:00:27 
PEWCC-PEWCC 00:13:22 

JActiveModules-SA 00:08:04 
MCODE-MCODE 00:10:44 
CytoHubba-MCC 00:07:42 

ActiveSubnetwork-GA 00:32:50 
ClusterViz-FAG-EC 00:52:18 

Note: All programs run with their default parameters except CytoHubba. In CytoHubba Top 50 node(s) are ranked by MCC. 

 

 

Figure 3. Fold Enrichment Analysis results of the subnetwork 
identification programs. 

Lastly, We also wanted to assess the consistency of the 
subnetworks obtained via different search programs. For this 
goal, we used the selected subnetworks which are used in the 
fold enrichment analysis and applied the normalized mutual 
information on modules. In Figure 4, the NMI results are 
presented with a heatmap. NMI value is obtained in the range 
[0, 1]. 

 

Figure 4. Normalized Mutual Information Analysis of the 
subnetworks identified via different programs. 

They are are color-coded from dark blue (NMI=0) to light blue 
(NMI=1). While the value zero of NMI indicates that the 
subnetworks identified by the related methods are 
independent of each other, the value one of NMI indicates that 

the subnetworks identified by the related methods are the same 
as each other. As shown in Figure 4, we obtain the consistency 
of results between the methods according to the decreasing 
values as follows; PINBPA-MCODE, PEWCC-PathFindRSA, 
MCODE-PathFindRGA, MCODE-PathFindRSA. As a result, 
compared to others, the consistency of the results between the 
PINBPA-MCODE and PathFinRSA-PEWCC is the closest to 1 
with a 0.5. Except for these, there is no consistency of results 
between other methods. It means that the results of PINBPA-
MCODE and PathFinRSA-PEWCC methods are consistent. It 
may make sense to choose these binary method combinations 
in analyzes that require comparison. 

4 Conclusions 

Active sub-networks in the protein-protein interaction 
networks provide an insight into the basic principles of disease 
formation and development mechanisms. With the detection of 
related genes behind diseases, different treatments and the 
development of appropriate methods can be developed. For 
such reasons, active module finding programs get very popular. 
To define active subnetworks properly, the effective 
comparison of existing methods and the use of such analysis 
results while developing new active subnetwork search 
methods are necessary. For this purpose, in this study, we 
wanted to evaluate existing subnetwork search programs from 
different perspectives and get an idea about them. In summary, 
nine different active subnetwork search programs and their 
different types of algorithms are run. Firstly, features and the 
running time of programs are compared. Then the subnetworks 
are identified for all programs and we performed three 
evaluation analyses on the results, i.e., functional enrichment 
analysis, fold enrichment analysis, and normalized mutual 
information analysis. We used the functional enrichment 
analysis to show whether the founded sub-network is 
biologically meaningful. 

We also aimed to find out how many proteins in the 
subnetworks overlap with known epilepsy genes. In this 
regard, fold enrichment analysis is applied. Finally, normalized 
mutual information analysis is performed to examines 
information about the consistency of the results between 
different methods. 

According to the study results we've achieved with the epilepsy 
data set, we can list our inferences as follows. In cases such as 
data sets with big data input and parameters suitable for the 
program, pathFindR may be preferred. ActiveSubnetworkGA 
has the highest number of GO Terms so it can identify the 
different types of GO Terms for the top-scoring subnetworks. 
The CytoMoBAS has the highest fold enrichment result so the 
subnetworks defined by CytoMoBAS overlap the reference 
dataset more than the subnetworks of other programs. Finally, 
compared to other programs, the results of PINBPA-MCODE 
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and PathFinRSA-PEWCC methods are consistent. So it may 
make sense to choose these binary method combinations in 
analyzes that require comparison. To help users choose a 
program based on their needs, the results of other sub-network 
search methods can be compared in future studies. 
Furthermore, similar analyzes can be made that consist of 
different lots of disease data sets using the identified proteins 
can be used as biomarkers, and some proteins in these sub-
networks can be targeted for drug development studies.   

5 Author contribution statements 

In this work, the Burcu BAKIR GUNGOR contributed by her idea, 
designing article, spell check and evaluation of results; the 
Beyhan ADANUR DEDETURK contributed by literature review, 
running experiments, selection of parameters, writing the 
article. 

6 Ethics committee approval  and conflict of 
interest statement 

The article does not require permission from the ethics 
committee and there is no conflict of interest with any 
person/institution. 

7  References 

[1] Zhang L, Li Y, Ye X, Bian L. “Bioinformatics analysis of 
microarray profiling identifies that the miR-203-3p target 
Ppp2ca aggravates seizure activity in mice”. Journal of 
Molecular Neuroscience, 66(1), 146-154, 2018. 

[2] Nguyen H, Shrestha S, Tran D, Sha A, Draghici SmNguyen, 
et al. “A comprehensive survey of tools and software for 
active subnetwork identification”. Frontiers in Genetics, 
10(155), 1-15, 2019. 

[3] Ozisik O, Bakir-Gungor B, Diri B, Sezerman OU. “A genetic 
algorithm approach to active subnetwork search applied 
to GWAS data”. In: 2013 8th International Symposium on 
Health Informatics and Bioinformatics, Ankara, Turkey,  
25-27 September 2013.  

[4] Bakir-Gungor B, Baykan B, I_seri SU, Tuncer FN, Sezerman 
OU. “Identifying SNP targeted pathways in partial 
epilepsies with genome-wide association study data”. 
Epilepsy Research, 105(1-2), 92-102, 2013. 

[5] Mitra K, Carvunis AR, Ramesh SK, Ideker T. “Integrative 
approaches for finding modular structure in biological 
networks”. Nature Reviews Genetics, 14(10), 719-732, 
2013. 

[6] Nikolayeva I, Pla OG, Schwikowski B. “Network module 
identification-A widespread theoretical bias and best 
practices”. Methods, 132, 19-25, 2008.  

[7] Ideker T, Ozier O, Schwikowski B, Siegel AF. “Discovering 
regulatory and signaling circuits in molecular interaction 
Networks”. Bioinformatics, 18(1), 233-240, 2002. 

[8] Wang L, Matsushita T, Madireddy L, Mousavi P, Baranzini 
SE. “PINBPA: Cytoscape app for network analysis of GWAS 
data”. Bioinformatics, 31(2), 262-264, 2014. 

[9] Su G, Morris JH, Demchak B, Bader GD. “Biological network 
exploration with Cytoscape 3”. Current Protocols in 
Bioinformatics, 47(1), 8-13, 2014. 

[10] Zaki N, Emov D, Berengueres J. “Protein complex detection 
using interaction reliability assessment and weighted 
clustering coefficient”. BMC Bioinformatics, 14(163), 1-9, 
2013. 

 

[11] Ozisik O, Bakir-Gungor B, Diri B, Sezerman UO. “Active 
subnetwork GA: A two stage genetic algorithm 
approach31 to active subnetwork search”.  
Current Bioinformatics, 12(4), 320-328, 2017. 

[12] Wang J, Zhong J, Chen G, Li M, Wu FX, Pan Y. “clusterviz: a 
cytoscape APP for cluster analysis of the biological 
network”. IEEE/ACM Transactions on Computational 
Biology and Bioinformatics, 12(4), 815-822, 2014. 

[13] Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. 
“cytoHubba: identifying hub objects and sub-networks 
from complex interactome”. BMC Systems Biology,  
8(4), 4-11, 2014. 

[14] Ayati M, Erten S, Chance MR, Koyutu RK M. “MOBAS: 
identification of disease-associated protein subnetworks 
using modularity-based scoring”. EURASIP Journal on 
Bioinformatics and Systems Biology, 2015(1), 1-14, 2015. 

[15] Ulgen E, Ozisik O, Sezerman OU. “pathfindR: An R Package 
for pathway enrichment analysis utilizing active 
subnetworks”. BioRxiv, 2018. 
https://doi.org/10.1101/272450. 

[16] Maere S, Heymans K, Kuiper M. “BiNGO: a cytoscape plugin 
to assess overrepresentation of gene ontology categories 
in biological networks”. Bioinformatics,  
21(16), 3448-3449, 2006. 

[17] He H, Lin D, Zhang J, Wang YP, Deng HW. “Comparison of 
statistical methods for subnetwork detection in the 
integration of gene expression and protein interaction 
network”. BMC Bioinformatics, 18(1), 149, 1-6, 2017. 

[18] Tripathi S, Moutari S, Dehmer M, Emmert-Streib F. 
“Comparison of module detection algorithms in protein 
networks and investigation of the biological meaning of 
predicted modules”. BMC Bioinformatics, 17(1), 1-18, 
2016. 

[19] Taya F, de Souza J, Thakor NV, Bezerianos A. “Comparison 
method for community detection on brain networks from 
neuroimaging data”. Applied Network Science,  
1(1), 1-20, 2016. 

[20] Adanur B, Gungor BB. “Comparison of disease-specific 
sub-network ıdentification programs”. In 2018 3rd 
International Conference on Computer Science and 
Engineering, Sarajevo, Bosnia, 20-23 September 2018. 

[21] Zhang Q, Zhang ZD. “SubNet: a Java application  
for subnetwork extraction”. Bioinformatics,  
29(19), 2509-2511, 2013. 

[22] Chen X, Xuan J. “MSIGNET: a Metropolis sampling-based 
method for global optimal significant network 
identification”. BioRxiv, 2018. 
https://doi.org/10.1101/260844. 

[23] Farahmand S, Foroughmand-Araabi MH, Goliaei S, 
Razaghi-Moghadam Z. “CytoGTA: a cytoscape plugin for 
identifying discriminative subnetwork markers using a 
game-theoretic approach”. PloS one, 12(10), 1-12, 2017. 

[24] Shi X, Barnes RO, Chen L, Shajahan-Haq AN, Hilakivi-
Clarke L et al. “BMRF-Net: a software tool for identification 
of protein interaction subnetworks by a bagging Markov 
random field-based method”. Bioinformatics,  
31(14), 2412-2414, 2015. 

[25]  Wang Q, Yu H, Zhao Z, Jia P. “EW_dmGWAS: edge-
weighted dense module search for genome-wide 
association studies and gene expression proles”. 
Bioinformatics, 31(15), 2591-2594, 2015. 

 
 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 28(2), 292-298, 2022 
B. Adanur Dedeturk, B. Bakir Gungor 

 

298 
 

[26] Ma H, Schadt EE, Kaplan LM, Zhao H. “COSINE: COndition-
SpecIc sub-NEtwork identification using a global 
optimization method”. Bioinformatics, 27(9), 1290-1298, 
2011. 

[27] Akhmedov M, Kedaigle A, Chong RE, Montemanni R, 
Bertoni F, Fraenkel E, Kwee I. “PCSF: An R-package for 
network-based interpretation of high-throughput data”. 
PLoS Computational Biology, 13(7), 1-7, 2017. 

[28] Segre AV, Groop L, Mootha VK, Daly MJ, Altshuler D et al. 
“Common inherited variation in mitochondrial genes is 
not enriched for associations with type 2 diabetes or 
related glycemic traits”. PLoS Genetics, 6(8), 1-19, 2010. 

[29] Kasperaviciute D, Catarino CB, Heinzen EL, Depondt C, 
Cavalleri GL et al. “Common genetic variation and 
susceptibility to partial epilepsies: a genome-wide 
association study”. Brain, 133(7), 2136-2147, 2010. 

[30] Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, et 
al. “A human protein-protein interaction network: a 
resource for annotating the proteome”.  
Cell, 122(6), 957-968, 2005. 

[31] Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, 
Dricot A et al. “Towards a proteome-scale map of the 
human protein-protein interaction network”.  
Nature, 437(7062), 1173-1178, 2005. 

[32] Novo Nordisk Foundation Center for Protein Research. 
“DISEASES (Disease-Gene Associations Mined From 
Literature)”. https://diseases.jensenlab.org (08.03.2021). 

[33] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. 
“Cytoscape: a software environment for integrated models 
of biomolecular interaction networks”. Genome Research 
13(11), 2498-2504, 2003. 

[34] Manda S, Michael D, Jadhao S, Nagaraj, SH. “Functional 
enrichment analysis”. Encyclopedia of Bioinformatics and 
Computational Biology, 2019. 
https://doi.org/10.1016/B978-0-12-809633-8.20097-6. 

[35] Pietro H. Guzzi. “Functional Enrichment Analysis 
Methods”. Encyclopedia of Bioinformatics and 
Computational Biology, 2019. 
https://doi.org/10.1016/B978-0-12-809633-8.20404-4. 

[36] Vinh NX, Epps J, Bailey J. “Information theoretic measures 
for clusterings comparison: Variants, properties, 
normalization and correction for chance”. Journal of 
Machine Learning Research, 11, 2837-2854, 2010. 
 
 
 
 

 


