Results of Conservative Treatment in Osseous Mallet Finger: A Retrospective Case Series

Murat Altan¹, Mehmet Demirel², Omer Ayık³

¹Sarıkamış State Hospital, Orthopaedics and Traumatology Department, Kars; ²Istanbul University, Istanbul Faculty of Medicine, Orthopaedics and Traumatology Department, Istanbul; ³Ataturk University Faculty of Medicine, Orthopaedics and Traumatology Department, Erzurum, Turkey

ABSTRACT

Aim: This study investigated conservative treatment’s clinical and radiological results in osseous mallet fingers.

Material and Method: 26 patients (17 males, 9 females; mean age=32.4 age range=18–48) diagnosed with osseous mallet finger injury were retrospectively reviewed and included in this retrospective study. Mallet finger injuries were categorized according to the Wehbe-Schneider classification. Distal interphalangeal joint (DIJ) angulation, radiographic union, osteoarthritis, and dorsal fragment occurrence were examined on anteroposterior and lateral X-rays. Crawford’s criteria were used to evaluate the functional outcomes.

Results: According to Wehbe-Schneider classification, 13 patients were type IA, 11 were type IB, and 2 were type IC. The mean time of the admission to our clinic after trauma was 1.09 days (range, 0–9). The mean follow-up was 7.38 months (range=6–10 months). The mean postoperative visual analog scale score for pain was 0.01 (range=0–2) at the last visits. The mean DIP extension deficits were 4.03° (range=0–10°). A dorsal hump was detected in 7 patients at the last follow-up. According to Crawford’s criteria, functional outcomes were perfect in 9 patients, as good in 12, moderate in 4, and poor in 1.

Conclusion: Evidence from this study has revealed that conservative treatment is an effective treatment modality in the management of osseous mallet fingers with satisfactory radiological and clinical outcomes.

Key words: osseous mallet; conservative treatment; percutaneous; K wire

ÖZET

Amaç: Bu çalışmanın amacı, osseöz mallet parmaklardaki konservatif tedavinin klinik ve radyolojik sonuçlarını araştırmaktır.

Materyal ve Metot: Osseöz mallet parmak yaralanması tanısı alan 26 hasta (17 erkek, 9 kadın; ortalama yaş=32,4 yaş aralığı=18–48) retrospektif olarak incelendi. Mallet parmak yaralanmaları Wehbe-Schneider sınıflamasına göre sınıflandırıldı. Anteroposterior ve lateral radyografik kaynamlar, osteoartrit ve dorsal fragman varlığı incelendi. Fonksiyonel sonuçların değerlendirilmesi için Crawford kriterleri kullanıldı.

Bulgular: Wehbe-Schneider sınıflamasına göre 13 hasta tip IA, 11 hasta tip IB ve 2 hasta tip IC idi. Travma sonrası klinik ziyaret süresi 1,09 gün (aralık, 0–9) idi. Ortalama takip süresi 7,38 ay idi (aralık=6–10 ay). Son kontrollerde ağrı için ortalama pozitif vizüel analog skala skoru 0,01 (aralık=0–2) idi. Ortalama DIP ekstansiyon defisiti 4,03° (aralık=0–10°) olarak kaydedildi. Son kontrolde 7 hastada dorsal hörgü saptandı. Crawford kriterlerine göre fonksiyonel sonuçlar 9 hasta mükemmel, 12 hasta iyı, 4 hasta orta ve 1 hasta kötü olarak belirlendi.

Sonuç: Bu çalışma, osseöz mallet parmaklarının tedavisi için konservatif tedavinin, tanın edici radyolojik ve klinik sonuçlarla birlikte etkili bir tedavi yöntemi olduğunu ortaya koymuştur.

Anahtar kelimeler: osseöz mallet; konservatif tedavi; perkütan; K teli

Introduction

An osseous mallet finger is a deformity caused by an avulsion fracture of the distal phalanx at the terminal extensor tendon bony insertion. Mallet finger is a common injury in young to middle-aged males and older females. The disorder usually occurs in the work environment or during participation in sports.

If untreated, the distal phalanx may progressively assume a fixed position, and the proximal phalangeal joints may gradually be hyperextended. Although several treatments are available for managing osseous mallet fingers, the literature’s optimal treatment choice is controversial. Conservative treatment of mallet finger fracture has been extensively reported, including continuous rigid aluminum splinting, prefabricated
splints, plaster casting, and custom-made orthosis. Numerous surgical techniques have been described, including open reduction and K-wire fixation, pin fixation alone, tension band wire, and pull-out steel wires. Each of the surgical procedures used to treat mallet fractures has a risk of complications. Consequently, there is no traditional surgical treatment.

This study aimed to present clinical and radiological results of conservative treatment in managing osseous mallet fingers.

Material and Methods

In this retrospective study, 32 patients with an osseous mallet finger injury (20 males, 12 females) treated conservatively in a single tertiary care center between 2018 and 2020 were included. Informed consent was obtained from each study participant, and approval of the institutional review board was obtained.

Inclusion criteria were: 1) type I-A, B, or C osseous mallet finger injury according to Wehbe-Schneider classification; 2) complete medical records and radiographic images; and 3) being willing to participate in the study. Patients with Wehbe-Schneider type II fractures were excluded as such fractures frequently require surgical treatment on account of the volar subluxation. Moreover, tendinous mallet fingers, comminuted fractures, injuries older than two weeks, patients with other injuries to the same finger, open fractures, and patients <18 years old were excluded from our study.

One of the patients was operated on due to the development of volar subluxation in the 1st-week controls and was excluded from the study. In addition, 3 of the patients were excluded from the study as they did not come for their sixth-month follow-up, and 2 of the patients were excluded from the study owing to their non-compliance with conservative treatment (removing the splint early). Thus, 26 patients who met the inclusion criteria were included.

Reviewing the injuries, five patients had sports injuries, two were involved in an assault, 13 had fallen from a height, and six had work-related injuries. The affected fingers were index finger (n=2), middle finger (n=3), ring finger (n=10) and little finger (n=11).

Distal interphalangeal joint (DIJ) angulation, radiographic union, osteoarthritis, and dorsal fragment occurrence were evaluated on lateral X-rays. DIJ angulation was examined on the lateral X-rays with a line drawn in the middle point of both the middle and distal phalanx in its transverse axis to measure the angulation, and exact angulation could be determined with the digital X-ray software.

Crawford’s criteria were used to evaluate the functional outcomes that provide excellent for full DIJ extension, full flexion, no pain; good for 0–10° of extension deficit, full flexion, no pain; fair for 10–25° of extension deficit, any flexion loss, no pain; and poor for >25° of extension deficit or persistent pain. The extensor lag in the injured finger’s DIJ was additionally measured with a standard steel finger goniometer using a dorsal approach.

Conservative Technique

All patients were administered volar aluminum orthotic splint without restricting the proximal interphalangeal joint in the neutral position and were emphasized the significance of maintaining the exact position of the injured finger. Patients were revealed to apply the volar splint full time for six weeks without motion, followed by a night orthotic splint for two weeks with passive flexion. Patients were strictly followed in the first week, second, and third week for the appropriate usage control of the splint.

Physical Therapy

All patients were applied the volar splint full time throughout the first six weeks without motion. At the end of the 6th week, passive flexion exercises were commenced without extensor lag. Night orthosis was afterward practiced for two further weeks for all patients. Splint duration was extended for five patients whose union time exceeded six weeks. Patients were evaluated by goniometric measurements of the range of motion of DIJ and extensor lag in the DIJ.

Clinical Evaluation

All patients were routinely observed in the sixth month following the beginning of physical therapy. At each visit, the patients were assessed with distal interphalangeal joint flexion, extension lag, final angulation, visual analog scale score, and radiographic union. All data, such as pain scores, fingernail and skin inflammation, and volar subluxation in the X-ray, were recorded.

Results

Clinical Results

Seventeen male and nine female patients were treated conservatively, and their average age was 32.4 years (range=18–48 years). Mallet finger injuries were
evaluated in all patients according to Wehbe-Schneider type IA-B and C. 13 patients were type IA, 11 were type IB, and 2 were type IC (Fig. 1).

The mean time of the admission to our clinic after trauma was 1.09 days (range, 0–9). Treatment was started promptly after patients applied. There was an injury of the little finger in 11 patients, a ring finger in 10 patients, three patients in the middle, and two patients with the index finger injuries. Dominant and non-dominant hands were affected in 15 and 11 patients consecutively.

Six patients were admitted with work accidents, 13 patients with falls, five patients with sports-related injuries, and two patients with assault-related injuries.

The mean follow-up was 7.38 months (6–10 months). The mean postoperative visual analog scale score for pain was 0.01 (range, 0–2) at the last visit.

The mean DIP flexion degrees at the final controls were 71.3° after conservative treatment (40–80°). The mean DIP extension deficits were 4.03° (0–10°) (Fig. 2). Dorsal hump was detected in 7 patients at the last follow-up, but it was absent in 19 patients (Fig. 3).

According to Crawford's criteria, nine patients had perfect, 12 had good, 4 had moderate, and one patient had poor results in the conservative treatment (Fig. 4). In 4 patients, volar subluxation was observed in the follow-up for one week, and they were operated on and excluded from the study. Superficial skin necrosis, osteomyelitis, nail bed problems, and skin infection were not detected.

Radiographic Results
The mean time to union was determined as 6.07 weeks (5–8 weeks) on lateral radiographs. Final DIJ angulation was 4.88° on lateral radiographs (0–12°). In 1 patient, the development of osteoarthritis was observed on lateral radiographs during the follow-up.
The dorsal hump can be encountered due to the fragment's dorsal displacement in patients treated conservatively; however, a similar condition can be found in patients who underwent open surgery or patients who underwent percutaneous K wire.

Some authors recommend the hook plate technique as an alternative for manipulating small, avulsed fragments13. Nevertheless, the disadvantages of this method include the fact that the plate is palpable just under the skin and then the requirement of removing the plate by open surgical technique.

Furthermore, trans-fixation K-wires were used to fix the DIP joint may cause iatrogenic nail bed injury, bone fragment rotation, chondral damage, or osteoarthritis14.

Additionally, some authors have reported some disadvantages of repeated attempts during insertion in surgical procedures. Examples are articular cartilage damage leading to secondary osteoarthritis, particularly if more than one attempt during pin insertion is needed, and iatrogenic nail bed injury15.

A review of the literature reveals that the overall complication rate of open treatment is 53%. Major complications include infection (20%), permanent nail deformities (18%), joint incongruity (18%), fixation failure (13%), and bony prominence (11%)16.

A volar aluminum splint is preferred for patients in this study, treated conservatively. Although the dorsal splint application was practical, the higher rate of skin complications due to the less soft tissue in the dorsal region was the fundamental reason for our volar splint application.

Although some authors limited splints to <5 weeks in the early union, the use of splints in patients in our study was completed to 6 weeks.

Stack splint application has been studied with hypotheses that patient compliance will be better and functional results superior to other regimens. Nevertheless, it has been determined that patient compliance is low and only half of the patients have satisfying outcomes, although severe skin complications have not been encountered. Therefore, the authors reported that they no longer prefer to use it17.

Many studies did not reveal a significant difference between surgical and conservative treatments. For this reason, most authors prefer conservative methods in mallet finger treatment18–20.
Studies supporting conservative treatment include Stern et al.21 found lower complication rates in conservative treatment.

Likewise, Smit et al.22 compared surgical and conservative treatment methods and recommended that the best treatment choice for uncomplicated mallet finger injuries is provided with orthotic methods.

In their meta-analysis covering studies published between 1966 and 1998, Geyman et al.23 recommended that conservative methods are appropriate for most mallet injuries, even for fractures of more than 1/3 of the articular surface.

In this study, the efficacy of conservative treatment and the positive effects of conservative treatment on the functional status of patients to avoid the potential complications of surgical treatment is aimed to confirm.

Various publications regarding surgical methods have been reviewed in the literature, and the results were found to be similar in comprehensive series.

The lack of a control group can be declared as the weakness of this study.

Conclusion

This study reveals that conservative treatment is cost-effective, efficiently applicable, and found at high rates in the literature. While various complications of surgical treatments are avoided, it has been determined that appropriate functional results can be achieved in patients with conservative treatment.

References