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1. Introduction
A complex non-linear dynamical system like autonomous 
underwater vehicle (AUV) undergoes changes in 
environmental conditions throughout its operation. In 
addition, the effects of added mass, which is the additional 
inertia encountered when a body accelerates through a 
fluid, must be accounted for while describing the dynamic 
equations. This causes uncertainty in the system parameters. 
As a result, modeling an AUV system accurately becomes an 
error-prone task. In addition, the presence of environmental 
disturbances like waves and ocean currents makes the 
process of AUV modeling even more difficult. Therefore, 
AUV control remains an ongoing research topic, and all the 
latest advancements in control methodologies are being 
tested on AUVs. These methodologies include robust control 
techniques, as seen in [1-3], adaptive control methods, as 
explored by [4], and optimal control, as demonstrated in [5], 
among others, which were applied to AUVs to obtain better 
performance in navigation and communication. Disturbance 
observer-based control methods have also been employed 
to address environmental disturbances, as evident in [6,7].
In the current scenario, researchers are increasingly drawn 
toward data-driven methods looking for alternatives 

to model-based techniques, as relying on model-based 
techniques for controlling non-linear dynamic systems like 
AUV systems comes with plenty of assumptions. This paper 
introduces a data-driven method rooted in the unfalsification 
theory, which was initially devised by Safonov and Tsao 
[8] in 1995. It is an iterative procedure that relies on the 
system’s input and output values. Unfalsified control theory 
is a supervisory technique in which the system is adapted to 
different scenarios by switching between controllers from 
among a finite set of candidate controllers. Controllers that 
meet the specified performance criteria are integrated into 
the closed-loop control system, whereas those that fail are 
excluded.
This method differs from gain scheduling, which relies 
on predefined controller gains without feedback to 
compensate for inaccuracies in scheduling and is a model-
dependent technique [9,10]. Unfalsified control, on the 
contrary, evaluates the candidate controller a priori using 
the concept of fictitious reference and past measurement 
data and performs the selection procedure online. At any 
point in time, if the present controller fails to satisfy the 
desired criteria, it is removed from the loop and the next 
best candidate is brought into the loop. This method was 
applied to a 2-degree-of-freedom (DOF) robotic arm 
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system for parameter estimation in [11]. The mathematical 
framework of this method and its several properties 
have been explored in [12]. The method was also tested 
for robustness in [13], and its stability properties were 
analyzed in [14]. In [15,16], the concept of unfalsification 
is combined with model reference adaptive control for set 
point tracking. It has been stated that the selection of an 
unfalsified controller may be performed either from a fixed 
set of candidates or via online optimization techniques. 
The online optimization technique was inspected in [17]. 
Furthermore, the control design was tried on a knee joint 
for the process of neuroprostheses in [18]. In [19], it was 
applied to a reactor system for temperature control. In a 
previous study, the application of this method to dynamic 
positioning in an AUV system was discussed [20]. In 
addition, data-driven methods have found utility in sample 
collection for oceanographic studies [21,22]. The design 
of a data-driven   H  ∞    loop shaping controller is detailed in 
[23], and more recently, its examination in non-linear time-
varying plants is presented in [24-26].

1.1. Symbols and Abbreviations
   [    ]     T   denotes the transpose of a matrix,   ‖ ‖   represents the 
Euclidean norm of the signal, and  ∫    indicates the integration 
of a function.  J  is a rotation matrix determined by a choice of 
Euler angles, and  𝔍  is the cost function, which depends on 
the system output, control input, and a fictitious reference.   
L  2e    represents the extended Euclidean norm space and 
 ∥  ∥  τ   denotes the truncated norm. Further details on these 
concepts are explored in the forthcoming sections.
The SNAME notation, as presented in [27], is adopted for 
describing the motion of AUVs in six DOF. Specifically, as 
illustrated in Figure 1, linear motion along the X-axis is 
denoted by 𝑥, while rotational motion along the X-axis is
denoted by 𝜑. Along the Y-axis, linear motion is denoted by
𝑦 and rotational motion is denoted by 𝜃. Along the Z-axis,
linear motion is denoted by 𝑧, and rotational motion is
denoted by 𝜓.

Figure 1. Position and angle representation in the reference frames

1.2. Structuring the Paper
The paper is structured as follows: Section 2 provides a 
summary of the AUV system and its mathematical model. 
Section 3 outlines the problem statement, and the adaptive 
unfalsified controller design is expounded in section 4. 
The stability analysis of the controller design is shown in 
Section 5. Section 6 discusses the simulation results, and the 
conclusion is presented in Section 7.

2. System Description and Model of the AUV
2.1. Construction of an AUV
An AUV is a propeller-driven platform commonly powered 
by lithium-ion batteries for propulsion. The key elements 
in the structure of an AUV encompass a hull, a propulsion 
system, a submersion mechanism, an electric power 
supply, navigation sensors, and a communication system. 
The AUV incorporates navigation sensors such as the 
inertial measurement unit (IMU) and sonar. In addition, it 
is equipped with pressure sensors, temperature sensors, 
battery monitoring sensors, leakage sensors, etc.
For AUVs, a pressure hull is essential to house its 
components in a dry, watertight environment. This hull 
accommodates electronic components and facilitates access 
for maintenance or modifications.
The volume of the AUV remains constant underwater, 
necessitating an increase in the downward force to dive 
deeper and counteract buoyancy. This can be achieved by 
adding mass through ballast tanks or external thrusters. 
Ballasting, which involves pumps and compressed air, is a 
common method, whereas thrusters pointing downwards 
offer a simpler but less power-efficient alternative. 
All AUVs require propulsion, with motors being the 
prevalent choice due to their availability and cost-
effectiveness. The placement of the motors affects the 
controllability across various DOF. Power consumption 
increases significantly with vehicle speed, posing an 
optimization challenge for achieving an ideal speed within 
the limited energy supply. Sealed batteries are used to 
supply electric power in AUVs. 
Common methods for AUV navigation include dead 
reckoning, inertial navigation using IMUs, and acoustic 
navigation. However, to enhance the accuracy of inertial 
navigation sensors like IMU, additional aids such as 
differential global positioning systems for position 
estimation, Doppler velocity logs for velocity estimation, 
and pressure sensors for depth estimation are necessary. 
Acoustic navigation relies on the acoustic signals from the 
AUV transponder to determine its position. The primary 
methods used are long baseline and ultra-short baseline.
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Underwater wireless communication in AUVs is usually 
achieved using acoustic communication. Acoustic modems 
are used for transmitting and receiving signals underwater.
AUVs are developed in different shapes and sizes, each 
equipped with a different number of thrusters. The most 
common configurations include cylindrical or torpedo-
shaped models, such as the REMUS and HUGIN, and 
spherical-shaped models like the ODIN.
The AUV under consideration in this study has a spherical 
model configuration, as shown in Figure 1. It comprises a 
closed spherical body featuring eight thruster assemblies to 
propel the vehicle and provide six DOF motion capabilities. 
In the autonomous mode, the vehicle is controlled by an on-
board computer, whereas in the manual mode, control can 
be achieved by connecting to a ground station computer 
via TCP/IP through a tether. The tether, in autonomous 
mode, serves for monitoring and safety purposes. The 
sensor housing encloses the usual sensors for navigation 
and position estimation. In addition, other sensors such as 
oxygen or pH sensors are included based on the application 
of the designed AUV.

2.2. Mathematical Model and its Properties
Analyzing an AUV requires consideration of two reference 
frames, the body-fixed frame {B} and the inertial frame {I}, 
as illustrated in Figure 1. The mathematical model of the 
AUV characterizes its motion along various axes in 6 DOF 
through Euler angles.
The vehicular velocities with respect to the inertial frame 
(  η ˙   ) are described in relation to the velocities relative to the 
body-fixed reference frame ( ν ) by [27]

              
(1)

Here   η =  [    η  1  T ,  η  2  T    ]     T  =  [  x, y, z, φ, θ, ψ   ]     T    

and   ν =  [    ν  1  T ,  ν  2  T    ]     T  =  [  u, v, w, p, q, r   ]     T   

 x, y, z  represent linear displacements and  φ, θ, ψ  represent 
angular displacements in the inertial frame. Similarly  u, v, w  
represent linear velocities and  p, q, r  represent angular 
velocities in the body fixed frame.   J (  η )     is the transformation 
matrix.
The dynamic model of an AUV considers hydrostatics, 
hydrodynamic forces, viscous damping, and propulsion 
forces and torques that act on the vehicle’s body. The 
additional force due to the added mass is also accounted 
for. These components are encompassed in the non-linear 
hydrodynamic equation of motion of the AUV and are 
represented as;

          
(2)

In the above equation,   M (  η )     represents the matrix 
containing mass and inertia coefficients,   M ∈  R   6×6  ,   C (  η,  η ˙   
)     signifies the Coriolis matrix,   C (  η,  η ˙   )   ∈  R   6×6   ,   D (  η,  η ˙   )   ∈  R   6×6    
denotes the damping matrix,   g (  η )   ∈  R   6    represents the 
gravitational matrix,   T  E    accounts for disturbances induced 
by environmental factors and   T ∈  R   6   is the control input in 
the inertial reference frame encompassing both propulsion 
forces and torques. When the vehicle is fully actuated, the 
control input vector  T  can be expressed as 

             
(3)

The work presented in this paper focuses on an AUV with 4 
DOF motion. The dynamic equation is given by

              
(4)

Here   η =  [  x, y, z, ψ   ]     T    and  η,  η ˙  ,  η ¨   ∈  R   4  ,   M ∈  R   4×4  ,
  D (  η,  η ˙   )   ∈  R   4×4   ,  T and  T  E   ∈  R   4  .

Note:
N1. Here, the gravitational term is presumed to be zero given 
the constant desired motion along the Z-axis. The Coriolis 
and centripetal force terms are considered negligible due to 
the low speed of the vehicle and hence are omitted from the 
equation.
N2. The reference trajectory is expressed in the inertial 
frame; therefore, for mathematical gravity, the dynamical 
equation of the AUV is expressed in the same frame.

2.2.1. Properties
P1. The mass and inertia matrix is a positive definite 
symmetric matrix. 

           
(5)

  δ  m   ,   δ  M    are positive constants and   I  n    is the identity matrix of 
the nth order. 
P2. The Damping matrix is non-symmetric and strictly 
positive definite.

              
(6)

The AUV model in Equation (4) is assumed to have unknown 
parameters; therefore, the mass and damping matrices are 
expressed in regressor form as;

             
(7)

where   Y (  η,  η ˙  ,  η ¨   )   ∈  R   4×p    is a known regressor matrix and   
Φ =  [    ϕ  1  , ...,  ϕ  p     ]     T    is the unknown parameter vector. 
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3. Problem Description
3.1. Problem Statement
Given an input-output set    D  τ   =  {    T  τ  ,  ϓ  τ   }     such that   D  τ   ∈  
𝔏  2e    of the AUV system in (7) has uncertain parameters, the 
proposed adaptive unfalsified controller drives the AUV to 
follow a desired trajectory.
To realize this problem statement, the following assumption 
is required.
Assumption: The input-output data of the system,  T  and  
ϓ =  [η,  η ˙  ,  η ¨  ]   are measurable and available.
With the above assumption, the input-output data of the 
system are used to design the controller according to the 
proposed design. Because an infinite signal cannot be 
measured in real time, the input-output data of the system 
is truncated over a finite time.
Lemma 1: A truncated signal   x  τ    is defined as the signal   x (  t )     
for a time period  τ ∈ R , if 
 

 
 
A truncated   L  2    norm of a truncated signal   x  τ    is given as 

Here  ∥ x ∥  stands for the Euclidean norm of   x (  t )     for time 
 τ . Also  x ∈  L  2e   , if  ∥ x  ∥  τ    exists  ∀ τ < ∞  where   L  2e    is the 
extended   L  2    norm space.

The AUV system (4) is simulated and run such that the 
input   T  

T
   =  T (  t )    

t=0
  ∞    when fed to the system generates the 

corresponding output   ϓ  
T
   =  ϓ (  t )    

t=0
  ∞    which is measured. 

This dataset    D  
T
   =  {   T  

T
  ,  ϓ  

T
   }     is truncated up to a period   t ∈  

[  0, τ ]     to obtain the resultant set    D  
τ
   =  {    T  

τ
  ,  ϓ  

τ
   }     and   D  

τ
   ∈  L  

2e
   .

For mathematical simplicity the subscript  τ  is removed 
from the resultant data set    D  τ   =  {    T  τ  ,  ϓ  τ   }    , which is referred 
to as    {  T, ϓ }     from here on in the paper.

4. Controller Design
Unfalsified control is a data-based supervisory control 
technique that offers the advantages of both a robust 
and an adaptive control method. Non-linear systems like 
AUVs are affected mainly by parametric uncertainties and 
environmental disturbances. Thus, it is favorable to resort 
to a model-independent control method that is adaptive 
and can also tackle disturbances and non-linearities. Figure 
2 illustrates the block diagram of the controller design.

4.1. Unfalsified Control Design
The closed loop structure in Figure 2 consists of the AUV 
system, whose parameters are not certain, a controller bank    
C  B   =  [    C  1  ,  C  2  , ...,  C  n   ]     of  n  non-linear controllers designed 
using randomly chosen parameter values from a finite set 
within a given bound. The input from the controller and 
the output from the system are available for measurement. 
The unfalsified control method uses the measured data 
in iterations to find the most suitable controller from the 
aforementioned controller bank. To achieve this, a switching 
algorithm is devised. Controllers meeting the specified 
performance criteria are incorporated into the closed-
loop system, whereas those falling short of the criteria 
are excluded. This is achieved by generating a fictitious 

Figure 2. Adaptive unfalsified control system design
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reference signal by which the controllers are evaluated 
by mathematical computation and are not required to be 
placed in the closed loop. Only the selected controller is 
placed in the closed-loop system.
The following terms are defined for comprehension.
D1: Fictitious Reference: A virtual signal that, if it were part 
of the closed loop system, would have generated the given 
set of input-output values for a specific controller is called 
the fictitious reference signal. For input  T  and output  Υ  the 
fictitious reference can be computed as [28].

 
(8)

D2: Cost Function: To govern the system’s performance 
and stability criteria, a function incorporating the system’s 
input, output, and fictitious reference is defined as the cost 
function. All candidate controllers aim to minimize this 
cost function. The cost detectability property (Lemma 4 in 
section 4.4 of the paper) associated with the cost function 
ensures the closed-loop stability of the unfalsified controller 
[28].

4.2. Adaptive Unfalsified Control Design
The control problem is to design an adaptive unfalsified 
controller that allows the AUV to track a desired trajectory 
in the presence of parameter uncertainties and external 
disturbances without using explicit model information. The 
controller design is segmented into three stages.
Stage 1: A non-linear controller like a computed torque 
controller (CTC) is constructed, assuming all the parameters 
of the AUV system are known. Consider the difference 
between the desired and actual positions as the error given by 

 (9)

The control input obtained from the CTC is given by

  
(10)

     Λ  1    and   Λ  2    are positive gains that determine the speed of 
convergence of the tracking error to zero. Putting the value 
of  T  in equation (4), we obtain,

  
(11)

Stage 2: A set of  n  random values for unknown parameters 
forms the candidate set of controllers.

Stage 3: Using the method of unfalsification, near-optimal 
values are estimated for the unknown parameters, and the 
CTC with the estimated parameters is inserted into the 
feedback loop. The CTC takes care of the trajectory tracking 
by the AUV.

Let the unknown mass matrix  M  be approximated as    ̂  M   , an 
assumption for the bound of     ̂  M     −1   is made. By property P1,  
M  is positive definite and symmetric. Therefore,     ̂  M     −1   exists 
and  

  
(12)

where   Δ  im    is a positive. Hence, using the method of 
unfalsification, the unknown parameter  Φ  is estimated as  
  ̂  Φ   . The control law is modified to

  
(13)

Using Equations (7) and (13) the system dynamics thus 
becomes 

  
(14)

which implies 

  
(15)

  
(16)

where   e  Φ   =   ̂  Φ   − Φ  is the estimation error. 

  
(17)

  
(18)

In matrix form

  
(19)

Equation (19) constitutes the error dynamics of the system. 
The closed-loop stability analysis is discussed in the next 
section. Once the control law is designed according to 
Equation (13), a fictitious reference (8) is computed for 
each controller of the bank as

 
(20)

      ̂  M   ,    ̂  D    represents mass matrix and damping matrix estimates. 
This fictitious reference is used to evaluate the cost function 
that determines the selection of controllers.
Note: N3. The controller inverse, in this case, requires the 
inverse of the mass matrix, which is invertible and bounded 
as given in Equation (12).

4.3. Algorithm of Unfalsification
The hysteresis algorithm applied for the falsification 
procedure involves the following steps:
1. Given input and output data    D  τ   =  {  T, Υ }     of the system 
with initial states.



149

Journal of ETA Maritime Science 2024;12(2):144-155

2. for  i = 1,2, ..., n , Formulate control law using (13) to 
constitute the candidates of the controller bank 
   C  B   =  [    C  1  ,  C  2  , ...,  C  n   ]    . 
3. Compute the fictitious reference     ̂  η    de s  i  

    (20) for   C  i   . 
4. Calculate the fictitious error     ̂  e    ηi   =    ̂  η    de s  i  

   − η  for   C  i   . 
5. Evaluate the performance of   C  i    by minimizing the cost 
function  𝔍   given in Equation (30). Let at  τ = 0 ,  C =  
C  initial    and  𝔍 =  𝔍   initial    
6. if for   i   th   iteration   𝔍   i   <  𝔍   initial   , then  𝔍 =  𝔍   i    and  C =  C  i    
    else  C =  C  initial   
End if 
7. Increment  i . 
8. End for 
9. Repeat steps 4 to 6 to find the arg min  𝔍 .
10. Terminate when the minimum J is achieved.
 C  is the controller that remains unfalsified and runs in the 
closed loop system.

4.4. Stability Analysis and Proof
To establish the stability of an adaptive unfalsified controller, 
knowledge of a few relevant terms is required. These are 
defined as follows:
Lemma 2: The control problem is deemed feasible for a 
system   S  ζ    if there exists at least one stabilizing controller in 
the bank of candidate controllers   C  B    at any point in time [29].
Lemma 3: Unfalsified Stability: The stability of the system   S  ζ    
is considered falsified by the data    (  T, Υ )     if 

  
(22)

Otherwise, the stability of the system   S  ζ    is asserted to be 
falsified by the input-output pair    (  T, Υ )     [29].
T1: Stability Theorem: Given a plant in (7) and a bank of 
controllers    C  B   =  [    C  1  ,  C  2  , ...,  C  n   ]     with at least one stabilizing 
controller as in (13), the closed loop system is said to be 
stable if the unfalsified controller minimizes the cost 
function   𝔍 (  t )     which satisfies the cost detectability property.
Proof: To prove closed-loop stability in an unfalsified control 
approach, we must meet the following three conditions. 
First, there must be at least one stabilizing controller in 
the controller bank. Second, an iterative algorithm leading 
to a finite number of switches is necessary. Finally, the cost 
function considered must satisfy the cost detectability 
property. According to the stability theorem stated above, 
it is imperative to demonstrate the stability of at least one 
candidate controller to fulfill the feasibility (Lemma 2) of 
the control problem.
Let system (7) lies in the space
   S  ζ   =  {  ζ ∈ R : ∥ ζ ∥ ≤  2Γ ∥ P ∥ _  κ  min   (  Q )      }     where   ζ =  [  

 e  η  
     e ̇    η    ]   

represents the error matrix. Error dynamics (19) can be 
written as 

  
(23)

where   

A Lyapunov function candidate is considered as follows: 

  
(24)

where  P  is symmetric and positive definite. From Equation (24)

  
(25)

The time derivative of the Lyapunov function is obtained as

  

(26)

By design, we can ensure that 

  
(27)

Then, Equation (25) becomes 

  
(28)

Now, 

  

(29)

Hence 

  
(30)

In Equation (30),    2Γ _  κ  min   (  Q )     is a positive constant, and  ∥ P ∥  
is positively bounded. Thus, it can be concluded that the 
system is ultimately bounded by the Lyapunov stability 
theory within the range given by Equation (30). This 
confirms the feasibility condition (Lemma 2) of theorem 
(T1).
Next, as stated in the stability theorem (T1), the proof of 
stability requires knowledge of cost detectability, defined as 
follows:
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Lemma 4: Cost Detectability: A cost function    𝔍 (  t )     is 
considered cost detectable if it fulfills the conditions given 
as follows [29]: 
1. The function    𝔍  i   (  t )     monotonically increases in time  t  for 
all    (    C  i  , T, Υ,    ̂  η    de s  i  

   )    ,  i = 1,2, 3…  
2.    lim  t→∞    𝔍  i   (  t )     remains uniformly bounded for all
   (    C  i  , T, Υ,    ̂  η    des   )    ,  i = 1,2, 3…  when   C  i    is stabilizing. 
The cost function considered is 

  
(31)

 α, ρ > 0  are positive constants.     ̂  η    des    represents the 
fictitious reference and the fictitious error      ̂  e    η   =    ̂  η    des   − η  is 
the deviation of output from the fictitious reference.
To prove that   𝔍 (  t )     is monotonically increasing in time, 
equation (31) is differentiated w.r.t time  t  as follows:

 

 

(32)

Since, 

Therefore, 

  
(33)

Hence,   0 ≤  𝔍 ˙   (  t )   ≤  
 |      ̂  e    η     |     2  + α |  T   |     2 
 _   ‖      ̂  η    des   ‖     2  + ρ     for all    (    C  i  , T, Υ,    ̂  η    des   )    ,  

i = 1,2, 3 . .. .
This confirms the cost detectability of   𝔍 (  t )     which by 
theorem (T1) fulfills a condition of stability. As the selection 
of the unfalsified controller depends on minimizing the cost 
function that depends on the actual and fictitious errors, 
the convergence of the errors can be assured. Moreover, the 
candidate set of controllers is generated using the lower 

and upper bounds of the unknown parameters, which in 
any case confirms the boundedness of the estimates. The 
controller  C =  C  f    satisfies   𝔍 (  t )     and remains unfalsified at  
t =  τ  f    thus results in

  
(34)

where     ̂  η    de s  f  
    is the fictitious reference for controller  

 C =  C  f   . 
Hence, by Equation (34), and by the arguments stated 
above, it is concluded that the control system is stable.

4.5. Finiteness of Parameter Switching 
Switching of controllers depending on the attainment of 
the minimum cost function is performed by the following 
algorithm:
Hysteresis Switching Algorithm-   Γ  k   ∈ R  is a continuous logic 
input signal and  δ  is the output switching signal.  δ  and  k  belong 
to the normed vector space  K . If at  t =  t  0   ,   δ (  0 )   =   arg min      k∈K   
{    Γ  k   (  0 )   }     and at some subsequent time  t =  t  m   ,  δ  is switched 
to  l ∈ K.  In this scenario case  δ  remains constant for time  
  t  m+1   >  t  m    such that    (  1 + n )     min    {    Γ  k   (    t  m+1   )   }   ≤  Γ  l   (    t  m   )    ,  n  being 
the hysteresis constant. This generates a piecewise constant 
signal  δ  [30]. If   Γ  k    is uniformly bounded and   Γ  k   ≥ ω , such 
that  ω > 0 ,  ∀ k ∈ K  and all  t ≥ 0 , the switching remains 
finite. 
The monotonically decreasing set of unfalsified controllers 
bounded below by an empty set ensures a finite amount 
of switching among controllers. If there are  n  number 
of candidate controllers and at the minimum one stable 
controller satisfies the specified performance criteria, then 
by the algorithm stated above, after a maximum of  n-1  
switches the convergence of the switching of unfalsified 
controllers can be assured. 

5. Results
The proposed controller design is applied to the system in 
Equation (7), and its performance is assessed via simulation 
in MATLAB/SIMULINK. The system parameters are 
described as follows:

  

(35)

The regressor matrix is defined as

  

(36)
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Let the desired trajectory be 

  

(37)

The initial values of the states of the AUV are taken as 
  η (  0 )   =  [  1,1, 0.5,0.1   ]     T    and    η ˙   (  0 )   =  [  0,0, 0,0   ]     T   . For the CTC, 
the control gain values are   Λ  1   = 25  and   Λ  2   = 625 . The 
nominal values of these parameters are taken from [31], 
and a minimum and maximum bound on the variation of 
these parameter values is considered based on the nominal 
values. The nominal, minimum, and maximum values for 
each parameter are given in Tables 1 and 2. Next, a set of 
20 random values is generated between the upper and 
lower bounds for each    [    ϕ  1  , ...,  ϕ  8     ]     T    using the MATLAB 
function. These 20 random values, applied to the control 
law in Equation (13), constitute the 20 candidates of the 
controller bank. Using these values of   C  i   ,  i = 1,2, ..., 20  
a fictitious reference     ̂  η    de s  i  

    is derived for each candidate 
controller using the relation in Equation (20). The cost 
function   𝔍 (  t )     considered is the minimum of the performance 
specification    T  spec   (      ̂  η    des  , T, Υ )    , i.e.   𝔍 (  t )   = min  T  spec   (      ̂  η    des  , T, Υ )    . 
The performance specifications considered are given below.

  
(38)

wwhere   W  1   ,    W  2   , and   W  3    are weighting factors and  ρ  is a 
constant. The results satisfying the performance criterion 
(38) are presented in this paper.
The unknown parameters are estimated using the 
unfalification algorithm, which gives the near-optimal values 
of the aforementioned parameters. The parameters   ϕ  1  ,    

ϕ  3  ,    ϕ  5  ,  and   ϕ  7    are mass parameters of the system and are 
plotted against their nominal values, as given in Table 1. 
The parameters   ϕ  2   ,   ϕ  4  ,    ϕ  6  ,  and   ϕ  8    are damping parameters, 
as shown in Table 2. The estimated values obtained by 
minimizing the performance specification in (38) are also 
presented in Tables 1 and 2 along with the estimation error. 
The switching in the parameter values of   ϕ  1   ,  ϕ  3  ,    ϕ  5  ,  and   ϕ  7    
can be observed in Figure 3. 
The switching in the values of   ϕ  2  ,    ϕ  4   ,   ϕ  6  ,  and   ϕ  8    is shown in 
Figure 4.
As the algorithm runs for a complete iteration, the change in 
plant dynamics changes parameter values. Hence, causing 
the switching in parameter values. It is observed that the 
parameter estimates obtained are quite close to the nominal 
values of the parameters. Due to the inclusion of the norm 
of the control input term, switching shows a high variation 
during the transient period. The AUV is effectively guided by 
the controller that remains unfalsified to follow the specified 
trajectory, thereby achieving the control objective. Figure 5 
shows the tracking at each DOF, while Figure 6 depicts the 
circular trajectory plot.
In Figure 7, the error convergence plot is shown.
The results obtained are compared with those of the classical 
adaptive control design proposed in [31]. The tracking 
results presented in [31] show absolute convergence in 10 s, 
whereas in the proposed design, as evident from the results 
presented, absolute convergence is attained in 7 s. Thus, 
confirming faster and better convergence. Furthermore, the 
absence of parameter update dynamics in the closed-loop 
system, which is a characteristic of other adaptive methods, 
results in reduced computational complexity, providing an 
additional advantage in the proposed design.

Table 1. Unknown mass parameters

Sl. No.   Unknown 
parameter  Mass parameter  Nominal value 

(kg) Min. value Max. value Estimated value Absolute error

1   Φ1     м11 100 90 110 98.04 1.96

2   Φ3     м22 109 100 120 116.8 7.8

3   Φ5     м33 125 115 135 127.2 2.2

4   Φ7     м44 28.8 20 40 21.93 6.87

Table 2. Unknown damping parameters

Sl. No.
Unknown

parameter
Damping 

parameter
Nominal value

(kg/s)
Min. value Max. 

value Estimated value Absolute error   

1   Φ2     д11   10 1 20 3.5 6.5

2   Φ4     д22   400.18 390 410 393.5 6.48

3   Φ6     д33
10 1 20 18.84 8.84

4   Φ8     д44
1.8 1 3 2.95 1.15
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Figure 3. Parameter switching 

Figure 4. Parameter switching 

Figure 5. Trajectory tracking along the X, Y, and Z axes
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6. Conclusion
The functioning of an AUV is likely to be affected by its 
physical non-linearities and environmental disturbances. 
Thus, it is favorable to use an adaptive plus data-driven 
method to control an AUV. This paper proposes adaptive 
control using the method of falsification with real-time input-
output data. The approach utilizes measured information of 
input and output to select a controller from the candidate 
set. The plant used here is unknown, and the method uses 
the concept of a fictitious reference to obtain the parameter 
estimates. Near-optimal values of the parameter estimates 
are obtained by minimizing a designated cost function that 
considers the performance criteria. The controller utilizes 
these estimated values of parameters to guide the AUV 
toward the reference trajectory.

Simulation results verify the adaptiveness of the controller 
in estimating unknown parameters and prove its efficacy 
in attaining tracking objectives. The proposed design of 
the controller has also been corroborated with stability 
analysis and proof. The results have been substantiated 
with comparative results from another established 
method. In future work, it is planned to broaden the 
controller’s scope by incorporating robust controllers 
into the controller bank and applying it to higher DOF 
robotic systems, thereby establishing the robustness of the 
controller design. In addition, in this work, a fixed convex 
set of candidates has been used for parameter estimation. 
This can be upgraded for non-convex sets using the latest 
optimization techniques.

Figure 6. Circular trajectory tracking

Figure 7. Error convergence in adaptive unfalsified control
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