Research Article

Associations of Adipocyte-Derived Versican and Macrophage-Derived Biglycan with Body Adipose Tissue and Hepatosteatosis in Obese Children

Reyhan DEVECİ SEVİM1, Mustafa GÖK2, Özge ÇEVİK1, Ömer ERDOĞAN2, Sebä GÜNEŞ1, Tolga ÜNÜVAR1, Ahmet ANIK1*

1Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye
2Department of Radiology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye; Research Affiliate in Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
3Department Biochemistry, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye

What is already known on this topic?

In animal models of obesity, adipocyte-derived versican and macrophage-derived biglycan play a crucial role in mediating adipose tissue inflammation and inhibition of versican in mouse models reduces macrophage accumulation, inflammatory gene expression, and liver inflammation, leading to improved glucose tolerance and insulin sensitivity.

What this study adds?

This is the first study to reveal elevated levels of versican in obese children and a positive correlation of versican with inflammatory markers, such as IL6 and hsCRP. This suggests that attenuating versican release in obese individuals may have the potential to decelerate the inflammatory process, thereby reducing associated complications.

Abstract

Objective: In animal models of obesity, adipocyte-derived versican, and macrophage-derived biglycan play a crucial role in mediating adipose tissue inflammation. We aimed to investigate the levels of versican and biglycan in obese children and their potential association with body adipose tissue and hepatosteatosis.

Methods: Serum levels of versican, biglycan, IL-6, and hsCRP were measured using the ELISA method. The fat deposition in the liver, spleen, and subcutaneous adipose tissue was calculated using the IDEAL-IQ sequences of MRI. Biomeasurement analysis was performed using the Tanita BC 418 MA device.

Results: The study included 36 obese and 30 healthy children. Serum levels of versican, hsCRP, and IL-6 were higher in the obese group, while no significant difference was found in biglycan levels between the groups. There was a positive correlation versus cican, biglycan, hsCRP, and IL-6. The MRI revealed higher segmental and global hepatic steatosis in obese children. There was no relationship between the hepatic fat content versus cican, biglycan, IL-6, and hsCRP. Versican, biglycan, hsCRP, and IL-6 were not predictive of hepatosteatosis. Body fat percentage >32% provided a predictive sensitivity of 81.8% and a specificity of 70.5% for hepatosteatosis (AUC: 0.819, p<0.001). Similarly, a BMI SDS >1.75 yielded a predictive sensitivity of 81.8% and a specificity of 69.8% for predicting hepatosteatosis (AUC: 0.789, p<0.001).

Conclusion: Obese children have higher levels of versican, hsCRP, and IL-6, and more fatty liver than their healthy peers. Body fat percentage and BMI SDS were the best predictors for hepatosteatosis in these children.

Keywords: Chronic inflammation, biglycan, hepatosteatosis, obesity, versican

Ahmet ANIK, Professor, Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye
ahmet.anik@yahoo.com
+905325684540
0000-0002-7729-7872
2023-09-26
2023-12-26
Published: 18.01.2024

Introduction

Obesity is an epidemic disease affecting all age groups worldwide, with its prevalence rapidly increasing (1). Adipose tissue serves not only as a primary site of storage for excess energy but also triggers a chronic inflammatory process through the secretion of autocrine/paracrine molecules and cytokines (2,3). Lymphocytes and macrophages accumulated in adipose tissue release various proinflammatory/anti-inflammatory molecules such as TNFα, IL-1, IL-4, IL-6, IL-10, and from adipocytes, molecules like leptin, adiponectin, visfatin, resistin, adipin, thereby initiating a chronic inflammatory process (2,4,5). This process originating in adipose tissue culminates in systemic inflammation, giving rise to complications like insulin resistance, metabolic syndrome, and type 2 diabetes mellitus (6,7). Additionally, increased extracellular matrix (ECM) molecules and their degradation products function as immunomodulators (6,8,9). Identifying ECM components associated with adipose tissue inflammation and metabolic disturbances is crucial for a better understanding of this process (10).

Versican, released from hypertrophic adipocytes during inflammatory conditions, functions as a proteoglycan rich in chondroitin sulfate. It exerts its function by binding to serum amyloid A in HDL. Versican is known to regulate events associated with adipose tissue inflammation, including lipoprotein retention, lipid uptake, and foam cell formation. Furthermore, it interacts with molecules such as chemokines, growth factors, proteases, and receptors like CD44, PSGL-1, TLR2, facilitating the formation of intracellular signals (6,10,11,12).

Another proinflammatory molecule biglycan is a small proteoglycan rich in leucine, serves as a structural scaffold by interacting with collagen and elastin molecules in the ECM under physiological conditions. Additionally, its production increases in the adipose tissue during inflammatory states due to the accumulation of macrophages in the region. Elevated biglycan molecules bind to TLR2 and TLR4, inducing the secretion of proinflammatory cytokines such as TNF-α and IL-1β, thus playing a role in adipose tissue inflammation (6,10,13).

Han et al. investigated the effects of adipose tissue proteoglycans on inflammation and insulin resistance (6). They examined the molecules versican released from adipocytes and biglycan released from macrophages. In their experiments with mice, they observed an increased presence of versican and biglycan molecules in the adipose tissue of obese mice. Through targeted deletion of adipocyte-specific versican, the researchers noted a mitigation of macrophage chemotaxis. This intervention was associated with a reduction in the expression of inflammatory genes, attenuation of hepatic inflammation, augmentation of insulin sensitivity, and improvement in glucose tolerance. These outcomes suggest that versican exerts a regulatory influence on these processes. Conversely, deletion of macrophage-specific biglycan led to reduced macrophage accumulation and cytokine/chemokine release. However, while a decrease in liver inflammation and an increase in
insulin sensitivity were observed with versican deletion, these effects were not evident in mice with biglycan deletion. This study demonstrated the association of elevated biglycan levels with inflammation, obesity, insulin resistance, and type 2 diabetes in mice (6). Inflammatory process in adipose tissue contributes to the development of insulin resistance, dyslipidemia, and hepatosteatosis in obesity (11). Although ultrasonography (US) is commonly used for detecting non-alcoholic fatty liver disease (NAFLD), which is the most prevalent chronic liver condition, liver biopsy remains the gold standard diagnostic tool (15). However, biopsy, being an invasive procedure, can yield false negatives in patients with diffuse hepatosteatosis. In recent years, a noninvasive method known as "iterative decomposition of water and fat with an echo asymmetry at least-square estimation-Iron quantification (IDEAL-IQ) sequence," utilized through magnetic resonance imaging (MRI), has emerged as a reliable means for the detection of NAFLD (16). A clinical study investigating the relationship between versican, biglycan, and metabolic parameters related to obesity has not been encountered previously. In this study, the levels of versican and biglycan, which are believed to play a significant role in the etiopathogenesis and complications of obesity, were examined in obese children. Additionally, the aim was to explore the association of these molecules with adipose tissue, hepatosteatosis, and inflammation in the context of obesity.

Material and Methods

The study included obese children aged 7-18 years presenting to our pediatric endocrinology clinic with complaints of weight gain. These children had a body mass index (BMI) ≥ 95th percentile based on data from Turkish children. Gender and age-matched healthy children with BMI < 85th percentile were selected as the control group.

Patients underwent detailed physical examinations and laboratory tests were conducted to assess the possibility of underlying endocrine pathologies. Cases with any chronic diseases, a history of medication use, identified endocrine pathologies, and cases suspected of syndromic or monogenic origins were excluded from the study. Anthropometric measurements were carried out using a Harpenden stadiometer with a precision of 0.1 cm for height and a SECA scale with a precision of 0.1 kg for weight. Blood pressure measurements were conducted by one of the investigators following a validated protocol. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were taken two times from the right arm after a 10-minute rest in the supine position, utilizing a calibrated sphygmomanometer with appropriate cuff size (18). Waist circumference was measured using a flexible tape placed midway between the lowest rib and the superior border of the iliac crest (19). The measurement of triceps skinfold thickness was conducted using the Holtain skinfold caliper. One investigator performed triceps skinfold thickness measurements by grasping the skinfold tissue approximately 2.0 cm above the mid-arm circumference mark. The procedure involved placing the tips of the caliper jaws over the entire skinfold, followed by releasing the caliper handle to apply full tension on the skinfold. The thickness, closest to 0.1 mm, was then read (20). Bioelectrical impedance analysis was performed according to standards using the Tanita BC-183 MA device. The basal metabolic rate was determined through bioimpedance analysis.

Fasting blood samples were collected from the peripheral vein between 08:00 and 09:00 in the morning after a minimum of 12 hours of fasting. Serum fasting glucose, insulin, glycated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels were measured using enzymatic colorimetric methods. Biochemical analyses were performed using original reagents on an autoanalyzer with standardized methods at Aydın Adnan Menderes University School of Medicine Hospital. To assess insulin resistance, the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) index was utilized. Different cut-off values were employed for prepubertal and pubertal periods to evaluate insulin resistance. The cut-off values for the HOMA-IR index were set at 2.22 for prepubertal girls, 2.67 for prepubertal boys, 3.32 for pubertal girls, and 5.22 for pubertal boys (21).

Plasma levels of versican (Sunlong, Cat NO: SL1818Hu, Detection Range: 16-1000 pg/mL, Sensitivity: 4.5 pg/mL, Hangzhou, China), biglycan (Sunlong, Cat NO: SL2244Hu, Detection Range: 0.05-4 ng/mL, Sensitivity: 0.01 ng/mL, Hangzhou, China), IL-6 (Sunred, Cat NO: 201-12-0091, Detection Range: 3-600 ng/mL, Sensitivity: 2.112 ng/L, Shanghai, China), and high-sensitivity CRP (Sunred, Cat NO: 201-12-1816, Detection Range: 0.15-40 ng/L, Sensitivity: 0.012 ng/L, Shanghai, China) were measured using commercial kits following the manufacturer's procedures. In the utilized commercial kits, antibody-coated plates were employed, and the sandwich ELISA method was used. Plasma samples were applied on these plates followed by incubation following the kit procedure to allow the specific binding of the relevant molecules to the specific antibodies. Subsequent washing steps were conducted to remove unbound molecules, and measurements were taken at 450 nm using an ELISA reader. The results were then calculated based on the utilized standard curve.

Hepatosteatosis was assessed by biglycan and MRI by U.S. was performed radiologist using a Sonostar C5PL portable handheld ultrasound device (Sonostar Technologies Co. Ltd, Guangzhou, China). Hepatosteatosis was defined based on the increase in echogenicity between the liver and kidney. The evaluation was categorized into no steatosis (grade 0), mild (grade 1), moderate (grade 2), and severe (grade 3) steatosis according to the ultrasound steatosis score (22,23). MRI was conducted using a GE 3T Sigma Pioneer SW 29.0 R01 20134.a device. The IDEAL-IQ sequence, a brief imaging protocol without contrast, was employed to obtain cross-sectional images encompassing the liver, spleen, and subcutaneous adipose tissue within the abdominal region. The acquired images were used to calculate the percentages of fat in the liver, spleen, and subcutaneous adipose tissue using the GE AW 4.7 version workstation. The liver parenchyma was divided into nine segments, and measurements were taken. In the segmental measurement technique, each segment of the liver was measured separately, and the average of the measurements was taken. In the global measurement technique, the entire liver parenchyma was measured in a single session (16).

Statement of Ethics: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the non-interventional ethics committee of Aydın Adnan Menderes University (Ethics no: 2021/83).

Informed consent in this study was taken from all participants.

Statistical Analysis

The statistical analysis of the data was conducted using the Statistical Package for Social Science (SPSS) version 21 software (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp). The normality of continuous variables was assessed through descriptive statistics, skewness, kurtosis coefficients, histograms, and the Shapiro-Wilk test. Descriptive statistics were presented using counts, percentages, means, and standard deviations for normally distributed data, and medians, minimum, and maximum values for non-normally distributed data. For categorical variables, the chi-squared test was used in the statistical analysis. For independent group comparisons, if the data followed a normal distribution, the t-test was applied, and if not, the Mann-Whitney U test was used. Spearman correlation and ROC analysis were used. The Type I error level was set at 5%, and p-values less than 0.05 were considered statistically significant.

Results

A total of 36 obese and 30 healthy children were included in the study. There were no significant differences between the obese and healthy groups in terms of age, gender, height, and diastolic blood pressure (p > 0.05). However, obese individuals exhibited higher weight, BMI, systolic blood pressure, waist circumference, triceps skinfold thickness, basal metabolic rate, and body fat percentage (p < 0.05).

In the obese group, serum insulin levels were higher, and the incidence of insulin resistance was greater. Triglycerides, LDL cholesterol, HbA1c, alanine aminotransferase (ALT), and white blood cell count were higher among the obese individuals, while HDL cholesterol levels...
were lower. Total cholesterol, aspartate aminotransferase (AST), and thyroid function tests showed similar results between the two groups (Table 1). When compared to the control group, serum levels of versican, IL-6, and hsCRP were higher in obese children, whereas biglycan levels were similar between the two groups (Table 1).

Table 2 revealed the presence of positive relations among versican, biglycan, hsCRP, and IL-6. There was no relationship between the degree of hepatosteatosis and plasma levels of versican, biglycan, IL-6, and hsCRP. Additionally, no correlation was detected between metabolic parameters (glucose, hemoglobin A1c, insulin, HOMA-IR, lipid profile, TSH, sT4, and leukocyte) and serum levels of versican and biglycan. Similar results were obtained from both US and MRI for the assessment of hepatic fat content. When comparing groups based on MRI findings, obese children had significantly higher liver fat content than the control group using both the segmental and global measurement techniques (p < 0.001). Spleen fat levels were similar in both groups. Liver fat content was positively correlated with triglycerides, LDL, HbA1c, ALT, and body fat percentage, and negatively correlated with HDL (r = 0.333, r = 0.268, r = 0.339, r = 0.365, r = 0.529, r = 0.310, r = 0.634, r = -0.330, respectively; p < 0.05). Patients with hepatosteatosis had higher levels of HbA1c, white blood cells, insulin, HOMA-IR, triglycerides, LDL, ALT, sT4, body fat percentage, and body fat weight (p < 0.05). Participants with higher body fat percentages exhibited significantly higher serum versican levels, while those with more subcutaneous adipose tissue had higher IL-6 levels (p < 0.05).

Plasma levels of versican, biglycan, hsCRP, and IL-6 were not significantly predictive of hepatosteatosis (p > 0.05). A body fat percentage of over 32 % provided a predictive sensitivity of 81.8 % and specificity of 70.5 % (AUC: 0.819, p < 0.001) for hepatosteatosis. Similarly, a BMI SDS (Standard Deviation Score) above 1.75 yielded a predictive sensitivity of 81.8 % and specificity of 69.8 % (AUC: 0.796, p < 0.001) for predicting hepatosteatosis (Table 3, Figure 1).

Discussion

In obese individuals, along with various metabolic events, there is also a chronic inflammatory process, known to involve inflammatory markers such as IL-6 and hsCRP (2.24). This study investigates the serum levels of proteoglycans, specifically versican and biglycan, previously shown to increase during the inflammatory process in animal experiments. The research aims to explore the associations between these proteoglycans and inflammatory markers, including IL-6 and hsCRP, as well as their relationship to hepatosteatosis in obese children. Due to the chronic inflammatory process, inflammatory markers are known to be elevated in obese individuals (22,25,26). Furthermore, several studies have demonstrated that complications such as hepatosteatosis, metabolic syndrome, and type 2 diabetes mellitus arise from the chronic inflammation seen in other chronic markers IL-6 (9,26). In our study, the increased levels of IL-6 (r = 0.333) and hsCRP were also higher in obese children compared to the control group. This finding implies that the origins of complications are established during the early stages of life. The number of studies focusing on the role of versican in the regulation of inflammation and immunity is steadily increasing. Versican, with its known 5 isoforms, binds to various receptors and components involved in the inflammatory response, playing a pivotal role in both pro- and anti-inflammatory processes (9). In experiments conducted with obese mice, it has been demonstrated that obese mice exhibit increased production of versican from adipocytes cells. Inhibition of versican production from adipocytes has been shown to reduce macrophage accumulation, inflammatory gene expression, liver inflammation, resulting in improved insulin sensitivity and glucose tolerance (6). In various human studies, the association between versican and inflammation, such as cardiovascular diseases, respiratory diseases, and certain cancer types has been investigated and increased serum versican levels have been reported in these diseases where inflammation is present (9,12,27). However, there seems to be no existing study in the literature regarding versican levels in obese individuals. In our study, consistent with animal experiments in the literature versican serum levels in obese children were found to be higher compared to the control group (6). This suggests that interventions aimed at preventing an increased release or accumulation of versican might slow down the inflammatory process, thereby reducing the complications caused by chronic inflammation in obese individuals.

High levels of biglycan have been associated with inflammation, obesity, insulin resistance, and type 2 diabetes mellitus (10,28). However, unlike versican, the relationship between biglycan and hepatosteatosis has not been established (6,10). Previous animal studies have shown a link between obesity, insulin resistance, and biglycan levels (6). Nevertheless, in our study, no significant differences were observed in serum biglycan levels between obese children and the control group. This suggests that the in vivo relationship might be different, or this relationship might manifest later in life and may not be entirely evident in the childhood age group. In line with the literature, our study also found no correlation between serum biglycan levels and liver fat content (6,28).

In obese children, the chronic inflammatory process associated with increased adipose tissue, which is both a cause and a consequence of obesity, is known to lead to elevated hsCRP (29,30,31). Furthermore, similar to previous studies, increased production and secretion of versican and biglycan due to the expansion of adipose tissue and their relationship with inflammatory cells have been shown to play a role in chronic inflammation (6,8,9). In our study, a strong positive correlation was observed between hsCRP, versican, and biglycan levels, all of which have functional roles in the chronic inflammatory process. Partial correlation analysis was performed, revealing that the associations between versican, biglycan, IL-6, and hsCRP persisted in a similar manner. The correlation of versican and biglycan levels with hsCRP and IL-6 in obese children indicates a potential role of versican and biglycan in the inflammation process of obesity. Based on insights from animal studies, when evaluating the relationship between serum versican and biglycan levels with metabolic parameters yielded an evident correlation. The lack of correlation between versican and biglycan with metabolic parameters was attributed to the small sample size in this study.

Steatosis involving more than 5% of the weight of hepatocytes or liver tissue is considered abnormal (32). Studies on the accurate detection and grading of NAFDL have been continuing for many years. The gold standard method for the quantitative diagnosis of hepatosteatosis remains biopsy. However, the routine use of biopsy is quite limited due to its invasiveness and sampling errors (33). Ultrasound stands out as an economical and useful method, but it is highly subjective, and its quantitative and objective criteria are not clear (34). Even though US is relatively easy to perform and interpret, some limitations may be encountered: a quantitative assessment is not performed, when lower than 20% steatosis may not be detected (35). MR imaging techniques are currently in clinical use for the detection and quantification of hepatic steatosis (36,37). IDEAL-IQ method of MRI is based on the water and oil separation technique based on chemical change to obtain the proton-dense oil fraction. Many studies have shown that using IDEAL-IQ to test the stability and reproducibility of liver fat is acceptable and has high accuracy (16,38). MRI accurately classifies grades and changes in hepatosteatosis, with 80.0%-95.8% sensitivity and 83.6%-100% specificity (39,40). Based on ROC analysis, similar to NASPGHAN, ALT displayed predictive efficacy for hepatosteatosis in females, yielding an Area Under the Curve (AUC) of 0.762, 45.5% sensitivity, and 83.9% specificity, utilizing a cutoff of 22 U/L (32). The absence of a significant cutoff value in males was considered to be related to the small sample size of cases within our study.

The presence and severity of hepatosteatosis increased with higher waist circumference, BMI SDS, and body fat ratio (42,43). Consistent with these findings, our study identified a relationship between hepatosteatosis and these parameters. Specifically, our results revealed that body fat percentage > 32%, BMI SDS > 1.75, and waist circumference > 90 cm indicating the presence of hepatosteatosis were in line with
previous studies (42,44). However, the study could not establish a significant relationship between hepatosteatosis and IL-6, hsCRP, versican, and biglycan, primarily attributed to the limited number of participants. Nevertheless, our findings underscored that the most reliable predictors for hepatosteatosis were body fat ratio and BMI SDS.

Study Limitations
The inability to perform a power analysis due to the absence of a similar study in the literature represents a significant limitation of the study. Consequently, the sample size obtained may have been relatively limited as a result of this constraint. Moreover, the patients were not anesthetized during imaging, so movement artifacts occurred in some patients. In the technique we used, the resolution of the liver fat measurement sequence is low, and the presence of fat was not confirmed by biopsy, which is the gold standard method. Additionally, adiposity was measured once by a single radiologist.

Conclusion
In conclusion, the present study, for the first time, has revealed elevated levels of versican in obese children concomitant with inflammatory markers. These findings indicated that slowing down the release of versican in obese individuals may mitigate the inflammatory process, potentially reducing complications. Furthermore, the study indicates that waist circumference, BMI SDS and body fat ratio can be used to predict hepatosteatosis identified through the IDEAL-IQ MR sequence. However, further studies with a larger population are needed to identify novel predictive markers for hepatosteatosis.

Ethics
Study approval statement: The study was approved by the non vb-interventional ethics committee of Aydın Adnan Menderes University (Ethics no: 2021/83).

Conflict of Interest Statement
Consent to publish statement: Informed consent in this study was taken from all participants.

Author Contributions
The authors declare that they have no conflict of interest.

Funding Sources
The work was supported by the Aydın Adnan Menderes University Scientific Projects Unit (grant number TDF-21033)

Data Availability Statement
All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References
40. Table 1. Clinical, demographic, and laboratory characteristics of enrolled cases

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obese Median (min-max)</th>
<th>Control Median (min-max)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>13.6 (7.5-17.9)</td>
<td>13.0 (7.2-17.9)</td>
<td>0.693</td>
</tr>
<tr>
<td>Height (SDS)</td>
<td>0.8 (-2.1 - 3.2)</td>
<td>0.3 (-2.2 - 2.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Weight (SDS)</td>
<td>2.9 (2.0 - 6)</td>
<td>0.1 (-1.9 - 1.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI (SDS)</td>
<td>2.6 (1.9-3.3)</td>
<td>0.4 (-0.6 - 0.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>120 (100-140)</td>
<td>110 (105-134)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>70 (60-91)</td>
<td>70 (55-99)</td>
<td>0.435</td>
</tr>
<tr>
<td>Waist Circumference</td>
<td>102 (141)</td>
<td>70.6 (55-96.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Triceps Skinfold Thickness (mm)</td>
<td>19.5 (8-37)</td>
<td>10.3 (4-18)</td>
<td><0.001</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>89.5 (77-146)</td>
<td>88 (76-115)</td>
<td>0.622</td>
</tr>
<tr>
<td>Insulin (μU/mL)</td>
<td>17.2 (7.9-42.8)</td>
<td>10.4 (3-19)</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR index</td>
<td>3.8 (1.7-9.1)</td>
<td>2.2 (0.6-4.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>94.5 (26-559)</td>
<td>65 (25-169)</td>
<td>0.001</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)</td>
<td>136.5 (117-214)</td>
<td>151.5 (90-207)</td>
<td>0.123</td>
</tr>
<tr>
<td>LDL-C (mg/dL)</td>
<td>86.5 (38-149)</td>
<td>78.5 (37-132)</td>
<td>0.038</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td>48.4 (25.2-73.1)</td>
<td>55.3 (38.1-119.9)</td>
<td>0.005</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.5 (4.5-6.2)</td>
<td>4.8 (3.9-5.8)</td>
<td>0.006</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>19 (0-173)</td>
<td>20 (13-72)</td>
<td>0.111</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>18.5 (8-311)</td>
<td>15 (10-25)</td>
<td>0.022</td>
</tr>
<tr>
<td>Free T (mg/dL)</td>
<td>1.0 (0.8-1.2)</td>
<td>0.9 (0.8-1.2)</td>
<td>0.086</td>
</tr>
<tr>
<td>TSH (ul/mL)</td>
<td>1.8 (0.7-5)</td>
<td>1.8 (0.5-9)</td>
<td>0.359</td>
</tr>
<tr>
<td>WBC (103/μL)</td>
<td>9080 (6070-13410)</td>
<td>6520 (3990-12510)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Table 2. Correlation table for versican, biglycan, IL-6, and hsCRP

<table>
<thead>
<tr>
<th></th>
<th>Biglycan</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versican</td>
<td>0.381</td>
<td>0.002</td>
<td>0.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biglycan</td>
<td>0.424</td>
<td>0.001</td>
<td>0.305</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rho</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.748</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

*Spearman correlation was used. hsCRP: high sensitive c reactive protein, IL6: Interleukin 6, FQ: fat quantity

Table 3. Clinical and laboratory predictors of hepatosteatosis

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC</th>
<th>95% CI</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body fat percentage > 32 %</td>
<td>81.8 %</td>
<td>70.5 %</td>
<td>0.819</td>
<td>0.711-0.933</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI SDS > 1.75</td>
<td>81.8 %</td>
<td>69.9 %</td>
<td>0.789</td>
<td>0.659-0.918</td>
<td><0.001</td>
</tr>
<tr>
<td>Waist circumference > 90 cm</td>
<td>70.0 %</td>
<td>70.5 %</td>
<td>0.760</td>
<td>0.631-0.888</td>
<td>0.001</td>
</tr>
<tr>
<td>ALT > 22 U/L (girls)</td>
<td>45.5 %</td>
<td>75.3 %</td>
<td>0.678</td>
<td>0.451-0.905</td>
<td>0.148</td>
</tr>
<tr>
<td>ALT > 25 U/L (boys)</td>
<td>45.5 %</td>
<td>75.3 %</td>
<td>0.678</td>
<td>0.451-0.905</td>
<td>0.148</td>
</tr>
</tbody>
</table>

*ROC analysis was used. BMI SDS: Body mass index standard deviation score, AUC: Area Under Curve, CI: Confidence interval
Figure 1. ROC curve of hepatosteatosis for the four parameters: (a) body fat percentage, (b) waist circumference, (c) ALT (girls), (d) ALT (boys)