Case Report

Atypical Presentation and Course of ACTH-independent Cushing’s Syndrome in Two Families

Kübra Yükseck Acinkılı, Sezer Acar, Ahu Paketçil, Özgür Karbıyık, Mert Erbaş, Özge Besci, Gözde Akın Kağızmanlı, Deniz Kızmaçoğlu, Oktay Ulusoy, Erdener Özer, Kutsal Yörukgözü, Ayhan Abacı, Handan Güleryüz, Ece Böber, Korcan Demir

Primary pigmented nodular adrenocortical disorder (PPNAD), which is rarely seen children while it is the most prevalent cause of ACTH-independent Cushing’s syndrome (CS), is typically a micronodular disease and mainly associated with Carney complex (CNC). Carney complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas and multiple endocrine tumors.

What this study adds:
The findings of reported families provide information for a better understanding of the genetic pathogenesis, diagnosis and clinical management of CNC. Analytic variability in ACTH assays should be kept in mind during interpretation of ACTH levels. One case developed Hodgkin lymphoma five year after adrenalectomy, this association was not previously reported with CNC. Two cases had macronodules contrary to what is generally seen in cases with PPNAD.

Abstract
Primary pigmented nodular adrenocortical disorder (PPNAD) is a rare genetic disease mainly associated with Carney complex (CNC), which is caused by germline mutations of the regulatory subunit type 1A (Rio) of the AMP-dependent protein kinase (PRKAR1A) gene. We report three cases suffering from CNC with unique features in diagnosis and follow-up. All cases had obesity and a cushingoid appearance and exhibited laboratory characteristics of hypercortisolism. However the chemical and radiological examinations initially suggested Cushing's disease in one case. All of the cases were treated surgically, two of them underwent bilateral adrenalectomy at once, one of them had unilateral adrenalectomy at first but required contralateral adrenalectomy after nine months. Contrary to what is usually known regarding PPNAD, the adrenal glands of two cases (case 2 and 3) had a macronodular morphology. Genetic analyses revealed pathogenic variants in PRKAR1A (case 1: c.440+5 G>A, not reported in the literature; case 2 and 3: c.349G>T, p.V117F). One case developed Hodgkin lymphoma five year after adrenalectomy, this association was not previously reported with CNC. The findings of these families provide important information for a better understanding of the genetic pathogenesis, diagnosis, and clinical management of CNC. Hodgkin lymphoma may be a component of CNC.

Keywords: Cushing's disease, cancer, myxoma, lymphoma, PEG precipitation, macronodule

Korcan Demir MD, Pediatric Endocrinology, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
+90 (232) 412 22 22
kordemir@gmail.com
0000-0002-8334-2422
19.09.2023
10.12.2023
Published: 12.12.2023

Introduction
Endogenous Cushing’s syndrome in children is rare, with an incidence of 1–1.5 per million population per year. Adrenocorticotropic hormone (ACTH)-independent Cushing’s syndrome accounts for 15–20% of endogenous Cushing’s syndrome (1). Bilateral nodular adrenocortical diseases have been detected in 1–2% of them, resulting in ACTH-independent Cushing’s syndrome (2). In primary pigmented nodular adrenocortical disease (PPNAD), both adrenal glands are involved, and there are small brown-black nodules separated by the atrophic adrenal cortex. Nodules are typically smaller than 1 cm and demonstrate micronodular hyperplasia (3). Carney complex (CNC) is a rare autosomal dominant syndrome characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous, and other myxomas, and multiple endocrine tumors, the most common of which is PPNAD (4). CNC is caused by mutations in the PRKAR1A (OMIM 188830) coding for the regulatory subunit type 1a (Rio) of protein kinase A (PKA). To establish a diagnosis of CNC, a patient must exhibit two of the disease's manifestations or exhibit one of these manifestations and have an affected first-degree relative or an inactivating PRKAR1A mutation. No direct correlation has been identified between all PRKAR1A mutations and the various phenotypes yet (5).

The present work describes three cases who had PPNAD. Two of the cases were distantly related, and we present two pedigrees involving cases and currently healthy PRKAR1A mutation carriers. The cases had unique diagnostic and follow-up features; to the best of our knowledge, this report presents the first CNC case who developed Hodgkin lymphoma at follow-up.

Case Reports
Case characteristics are shown in Table 1 and pedigrees in Figure 1.

Case 1
The proband was an 11-year-old female; she presented to our institution with weight gain over the last 2 years. She was pubertal. The family history revealed no consanguinity. On physical examination, her height, weight, and body mass index (BMI) were 132.5 cm [-1.5 standard...
deviation (SD score), 44.8 kg (0.92 SD score), and 25.5 (+1.8 SD score), respectively. Moon face, abdominal adiposity, buffalo hump, acne, and stria were evident. The hormonal assessment showed a suppressed plasma ACTH in the presence of high morning serum cortisol and an altered circadian cortisol level. The hormonal and clinical signs indicated ACTH-independent CS. A computer tomography (CT) scan of the adrenals revealed bilateral micronodular hyperplasia (shown in Figure 3A). PPNAAD was suspected, and bilateral adrenalectomy was performed. Hydrocortisone and fludrocortisone were initiated. The histopathological findings showed numerous cortical hyperplastic nodules (less than 10 mm) compatible with PPNAAD. She progressively lost weight, and signs of CS regressed. The molecular genetic analysis of PRKAR1A identified a heterozygous splice site mutation within exon 4a (c.440+5G>A, pathogenic according to the American College of Medical Genetics and Genomics (ACMG)), which was not reported in the medical literature. This variation has not been associated with any protein alterations. Nevertheless, the occurrence of a different variation within the same identical exon (c.440+5G>C) was reported to result in a premature stop codon (TGA) and modification of the secondary structure of the RIα domain (6). Regarding CNC, cardiac examination and abdominal ultrasound (US) were normal, and there were no signs of skin lesions. Other pituitary hormone levels were normal. Genetic analysis of her mother (44 years old) and maternal aunt (35 years old) was performed, and they had the same variant in PRKAR1A without any symptoms or signs of CNC. Her father and other family members could not undergo genetic analysis due to social reasons. Reportedly, subjects III.11, IV.3, and IV.5 were diagnosed with CS and had an adrenalectomy. At the age of 16 years, the patient developed persistent cervical and supraventricular lymphadenopathy associated with weight loss and was diagnosed with nodular sclerosing type Hodgkin's lymphoma five years after adrenalectomy. At the most recent follow-up of Case 1, she was 17 years and 8 months old; her physical examination was normal (weight: 45 kg (-1.75 SD score), height: 150 cm (-2.21 SD score), BMI: 20 kg/m^2 (-0.25 SD score), and other manifestations of CNC were not present.

Case 2

This case was a 16-year-old female who presented with a 5-year history of significant weight gain, hirsutism, and irregular menstrual periods. Pubertal development was already complete, with spontaneous menarche starting at 12 years. The family history revealed no consanguinity. On physical examination, her height, weight, and BMI were 147.5 cm (-2.58 SD score), 85.6 kg (1.29 SD score), and 39.5 (3.83 SD score), respectively. She displayed striae, moon face, abdominal adiposity, buffalo hump, acne, and hirsutism. There were no lentigines or blue nevi on skin examination. Serum and 24-hour urinary cortisol levels were high. At first plasma ACTH level (Siemens, a solid phase, two-site enzyme chemiluminescent immunoassay system, IMMULITE® 8000 XPi) was found to be 1.0 pg/mL (normal, 7-63 pg/mL). Pituitary magnetic resonance imaging (MRI) revealed an adenoma (4 mm). High dose dexamethasone suppression test revealed not suppressed ACTH level of 10.6 pg/mL. Clinical and biochemical findings and bid interference and incompatibility suggested ACTH interference and ACTH was undetectable after polyethylene glycol precipitation (PEG). Similarly, ACTH level was too low (<1 pg/mL) when measured with a different analytical platform (Roche Cobas E411 Diagnostics, a solid-phase, two site electrochemiluminescence immunoassay platform). Adrenal CT scanning showed bilateral nodular lesions characteristic of hyperplasia, which were more prominent and macronodular on the left adrenal gland (shown in Figures 2B and 4). The molecular genetic analysis of the PRKAR1A gene identified a heterozygous, previously reported c.349G>T (p.V117F, pathogenic according to the ACMG criteria). Additional investigations for CNC features were negative. Her mother, father, and brother underwent genetic analysis and only her father had the same variant without any symptoms. At the most recent follow-up of Case 2, she was 21 years and 6 months old; her blood pressure was normal without any medication but she was obese (weight: 72.5 kg, height: 149 cm, BMI: 32.4 kg/m^2). Other manifestations of CNC were not present. The size of pituitary adenoma did not change during follow-up.

Case 3

Case 3 was a 12-year-old female who presented to another institution complaining of hirsutism, significant acne, and weight gain over the preceding two years. Her parents were second cousins. On physical examination, her height, weight, and BMI were 146 cm (-1.16 SD score), 102.4 kg (4.68 SD score), and 48 (+4.5 SD score), respectively. Pubertal development was Tanner stage 3, without menarche. She displayed striae, moon face, abdominal adiposity, and a buffalo hump. There were no lentigines or blue nevi on skin examination. She had persistent hypertension and was on enalapril, spironolactone, and oral contraceptive treatments. Hormonal assessment showed a suppressed plasma ACTH in the presence of high serum cortisol with increased levels of 24-hour urinary free cortisol. Adrenal CT evaluation revealed bilateral nodular lesions, which were more prominent on the left (shown in Figure 2C). She had undergone a left-side adrenalectomy at another institution. However, her clinical picture and hypertension did not improve, and she was referred to our center. Hormonal assessment showed a suppressed plasma ACTH levels in the presence of high serum cortisol. A right-side adrenalectomy was performed at our institution nine months after the first surgery. Hydrocortisone and fludrocortisone were initiated. Histopathological assessment revealed bilateral micro- and macronodular hyperplasia. PRKAR1A analysis detected the same mutation as in Case 2 (c.349G>T, p.V117F). Her mother and brother had the same variant without any symptoms or signs of CNC. Her maternal aunt, who had the same PRKAR1A mutation, was diagnosed with ACTH-independent CS. The adrenal CT revealed bilateral adenoma (right 25×27 mm, left 10×10 mm). She underwent a right adrenalectomy in another center, and histopathological assessment revealed adrenocortical oncocytoma. At the most recent follow-up of Case 3, she was 14 years and 4 months old; her blood pressure was normal without any medication, but she was obese (weight: 93.7 kg (+4.2 SD score), height: 152.5 cm (-1.59SD score), BMI: 40.2 kg/m^2 (+4.2 SD score)) and had hirsutism. Other manifestations of CNC were not present.

Follow-up

We recommended annual laboratory and imaging evaluations for both affected subjects and the asymptomatic carriers, with an echocardiogram for cardiomyopathy, a thyroid ultrasound for thyroid nodules, a testicular ultrasound for boys, and the measurement of insulin-like growth factor-1 and prolactin beginning in adolescence to screen for pituitary overactivity. For asymptomatic carriers, an annual measurement of 24-hour urinary free cortisol (UFC) excretion was planned. Until now, we have not identified any additional characteristics of CNC in both affected subjects and asymptomatic carriers (7).

Discussion

The diagnosis of CS is not straightforward; accordingly, approximately 2.5 to 3 years of delay are reported in the literature (8). The diagnosis of CS was further difficult in case 2 due to falsely nonsuppressed ACTH levels. Available ACTH assays present considerable differences in terms of sensitivity and lead to a wide variability in ACTH measurements, especially when confronted with low concentrations of ACTH. In the present case, measurement of the ACTH level was initially conducted with a kit that was reported to fail in detecting low ACTH levels in 19% of cases in a multicenter study (9)(10). Treatment of plasma and serum samples with PEG has been shown to precipitate immunoglobulins, including heterophile antibodies. Falsey high values are prevented, and the real result is achieved (11)(10). Thus, a PEG procedure was performed in our patient’s serum, and an undetectable ACTH level was demonstrated. Additionally, suppressed ACTH levels were confirmed with a different analytical platform. Regardless of their sensitivity and specificity, immunoassays are susceptible to occasional analytical errors. An astute clinician should keep in mind the potential for interference in cases where there is a discrepancy between clinical and laboratory findings. A contrast-enhanced CT scan should be the next diagnostic step after hormonal evaluation in patients with ACTH-independent CS (1). The appearance of the adrenal glands on imaging in patients with PPNAAD is often initially interpreted as normal, which differs from other
ACTH-independent disorders where relatively large tumors are easily seen. It is crucial that the clinician and radiologist have expertise in evaluating radiological findings in these cases. Nodules are typically less than 1 cm in size (micronodules)(12). However, histopathological evaluation of the adrenal glands in cases 2–3 demonstrated macronodules. Contrary to what is generally known, macronodular appearance can rarely be detected in cases of PPNAD. According to the report of 11 patients with PPNAD due to PRKAR1A variants, a patient (26 years of age) had macronodules (2.5 cm), while three (between 25 and 55 years of age) of four patients with PPNAD without a PRKAR1A mutation had macronodules (3). An 18-year-old female who had a mononucleic (c.440+5G>A) germline PRKAR1A mutation was reported to have macronodular PPNAD. In addition, a somatic mutation in PRKAR1A (16-bp deletion of the acceptor splice site) was found in exon 4B, IVSdel17→−2 was found in the macronodule. This somatic mutation was not present in the tissue adjacent to this nodule, in the left adrenal, or in leukocyte DNA (13). Exact etiology of macronodules in PPNAD is unclear, in general, somatic CTNNB1 mutations are suggested to play a role in the formation of macronodules by accumulation of β-catenin (5).

The variant in case 1 (c.440+5G>A) was also present in her asymptomatic mother and maternal aunt, while individuals III.11, IV.4, and IV.5 within this family were reported to have Cushings syndrome (CS) and underwent adrenalectomy. However, as these patients reside in another country, we were unable to gather additional clinical and genetic information about them. Typically, the overall penetrance of the Carney complex (CNC) in individuals with a pathogenic PRKAR1A variant exceeds 95% by the age of 50. However, some individuals with CNC may not develop neoplasia in cyclic AMP-responsive tissues. Cancer Research. 2005;65(11):4506–14. Functionally, loss of PRKAR1A is associated with excess PKA signaling in tumors from patients, although the exact mechanism by which this aberrant signaling causes tissue-specific tumorigenesis is unknown (16). Patients with a PRKAR1A mutation were more likely to develop other cancers, including growth hormone-secreting pituitary tumors, gonadal tumors, and thyroid neoplasms, at an earlier age (8). However, Hodgkin’s lymphoma lymphoma is not a component of PPNAD and has been reported in the context of CNC, despite the fact that PKA is obviously involved in the regulation of the immune system (17). To the best of our knowledge, there is only one animal study regarding this association. In a mouse model for the CNC, mice with antisense-Prkar1a expression were found to have B-cell lymphoma, but the Prkar1a knockout mice did not develop such a proliferative disease. In addition, Prkar2ae-knockout mice (absence of another PKA subunit) developed lymphoma (16). In view of the abovementioned data, we think that the PRKAR1A mutation in Case 1 might have played a role in her Hodgkin’s lymphoma.

In addition, Case 1 developed lymphoma during follow-up. PRKAR1A is the gene encoding the type 1A regulatory subunit of PKA, which modulates various events during cell proliferation along with cAMP, and deregulation of these effector molecules is associated with the development of different cancers via multiple pathways (15). Functionally, loss of PRKAR1A is associated with excess PKA signaling in tumors from patients, although the exact mechanism by which this aberrant signaling causes tissue-specific tumorigenesis is unknown (16). Patients with a PRKAR1A mutation were more likely to develop other cancers, including growth hormone-secreting pituitary tumors, gonadal tumors, and thyroid neoplasms, at an earlier age (8). However, Hodgkin’s lymphoma lymphoma is not a component of PPNAD and has been reported in the context of CNC, despite the fact that PKA is obviously involved in the regulation of the immune system (17). To the best of our knowledge, there is only one animal study regarding this association. In a mouse model for the CNC, mice with antisense-Prkar1a expression were found to have B-cell lymphoma, but the Prkar1a knockout mice did not develop such a proliferative disease. In addition, Prkar2ae-knockout mice (absence of another PKA subunit) developed lymphoma (16). In view of the abovementioned data, we think that the PRKAR1A mutation in Case 1 might have played a role in her Hodgkin’s lymphoma.

In summary, our study broadens the genotypic and phenotypic spectrum of PRKAR1A mutations associated with CNC. For the first time, the coexistence of PPNAD and lymphoma has been reported. The findings of these families provide important information for a better understanding of the genetic pathogenesis, diagnosis, and clinical management of CNC.

References:
Table 1. Case characteristics

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Age (years)</td>
<td>11</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Serum cortisol (µg/dl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morning, basal</td>
<td>17.8</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Midnight (at 23:00)</td>
<td>15</td>
<td>NA</td>
<td>19</td>
</tr>
<tr>
<td>Morning, after 1 mg dexamethasone</td>
<td>17.8</td>
<td>13.8</td>
<td>13</td>
</tr>
<tr>
<td>24 h UFC (µg/m²/day, N:<70)</td>
<td>NA</td>
<td>207</td>
<td>233</td>
</tr>
<tr>
<td>ACTH (pg/ml, N:0-63)</td>
<td><5</td>
<td><1</td>
<td><5</td>
</tr>
<tr>
<td>Adrenal CT scan</td>
<td>Symmetrical, bilateral nodular hyperplasia (bilateral micronodular)</td>
<td>Asymmetrical (L> R) bilateral nodular hyperplasia (left side macronodular)</td>
<td>Asymmetrical (L> R), bilateral nodular hyperplasia (left side macronodular)</td>
</tr>
<tr>
<td>PRKAR1A variant</td>
<td>c.440+5G>A</td>
<td>c.349G>T</td>
<td>c.349G>T</td>
</tr>
<tr>
<td>IGF-1 (ng/mL, N: 143-506)</td>
<td>NA</td>
<td>215</td>
<td>203</td>
</tr>
<tr>
<td>DHEA-S(µg/dl, N:25-460)</td>
<td>169</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Echocardiography</td>
<td>Normal</td>
<td>Normal</td>
<td>Minimal Hypertrophic IVS</td>
</tr>
<tr>
<td>Thyroid Ultrasound</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Abbreviations: UFC, urinary free cortisol; CT: computed tomography; IGF-1: Insulin Like Growth Factor-1; DHEAS: dehydroepiandrosterone, L, left; NA, not available; R, right; IVS, interventricular septum

* Cases 2-3 were distant relatives.
Fig. 1 Pedigrees of the two families with PPNAD. Half-filled squares and circles represent heterozygous variant carriers. Individuals who were reported to have Cushing syndrome and underwent an adrenalectomy are indicated with a star. (A) Case 1 is subject IV.1 (c.440+5 G>A). Genetic analyses were made in subjects II.1, III.5, III.6, and IV.1. (B) Case 2 is subject III.1 (c.349G>T) and Case 3 is subject IV.2 (c.349G>T). Genetic analyses were made in subjects II.1, II.2, III.1, III.2, III.5, III.6, III.7, IV.1, and IV.2.
Fig 2. Adrenal CT images showing numerous adrenal nodules of varying sizes: (A) Case 1, (B) Case 2, and (C) Case 3

Fig 3. Gross view of a resected adrenal glands showing nodular changes. (A) Case 1, (B) Case 2. Multiple tan-brown nodules [(A) micronodules, (B) macro and micronodules] were seen in the cortex.

Fig 4. Histopathological images of the adrenal of the case 2, nodules composed of clear and compact cells with variable lipid. No mitotic figures or atypical cells were present.