Unmeasurable HbA1c result due to hemoglobinopathy

Ayse Aktas, Belkiz Ongen Ipek, Okan Dikker
Department of Medical Biochemistry, University of Health Sciences, Istanbul Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Türkiye

Abstract
The aim of this study was to show the interference caused by hemoglobinopathy in the measurement of hemoglobin A1c (HbA1c). In our case presentation, we reported two patients whose HbA1c values were unmeasurable when using our laboratory's cation exchange chromatography. We detected HbSβ+ and HbSC variants by remeasuring the samples with another chromatography instrument. Measurement of HbA1c is a commonly performed procedure for the diagnosis of diabetes and for the assessment of blood glucose control in patients with diabetes. However, various hemoglobinopathies, chronic kidney disease, and abnormalities in red cell turnover rate may interfere with HbA1c quantification.

Keywords: Glycated hemoglobin, HbA1c, hemoglobinopathies, HPLC

How to cite this article: Aktas A, Ongen Ipek B, Dikker O. Unmeasurable HbA1c result due to hemoglobinopathy. Int J Med Biochem 2024;7(1):41–4.
our laboratory. Test results of the patients are presented in Table 1. The patients’ HbA1c tests were performed with a cation-exchange HPLC-based Adams A1C HA-8180V (Arkay, Inc., Kyoto, Japan) instrument. HbA1c values were not obtained by our instrument for both patients (Fig. 1). The samples were reevaluated with a cation-exchange HPLC-based Adams A1C HA-8180T (Arkay, Inc., Kyoto, Japan) instrument (Fig. 2). HbSβ+ and HbSC variants were detected from Case 1 and Case 2, respectively.

Discussion

The quantity of HbA1c in patient samples is not only affected by blood glucose levels but also influenced by changes in red blood cell lifetime and globin chain structure. Hence, clinical biochemistry, hematological, and analytical methods are all important when commenting on HbA1c [5].

When A1C values are unexpected or incompatible with blood glucose measurement results, a disorder in red cell turnover, hemoglobin variants, and chronic kidney disease should be considered.

Red cell turnover: Incorrectly elevated HbA1c levels can occur when red cell turnover is low. This situation can occur in megaloblastic anemia (related to folate or vitamin B12 deficiency). Conversely, incorrectly low HbA1c levels can occur with fast red cell turnover. This situation can occur in patients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results case 1</th>
<th>Results case 2</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/dL)</td>
<td>85</td>
<td>72</td>
<td>74–100</td>
</tr>
<tr>
<td>Urea (mg/dL)</td>
<td>31</td>
<td>40</td>
<td>16.6–48.5</td>
</tr>
<tr>
<td>Creatinin (mg/dL)</td>
<td>0.96</td>
<td>0.73</td>
<td>0.70–1.20</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>26</td>
<td>30</td>
<td>0–40</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>14</td>
<td>38</td>
<td>0–41</td>
</tr>
<tr>
<td>Iron (ug/dL)</td>
<td>102</td>
<td>65</td>
<td>33–193</td>
</tr>
<tr>
<td>UIBC (ug/dL)</td>
<td>184</td>
<td>228</td>
<td>125–345</td>
</tr>
<tr>
<td>Calcium (mg/dL)</td>
<td>9.4</td>
<td>9.2</td>
<td>8.6–10</td>
</tr>
<tr>
<td>Ferritin (ug/L)</td>
<td>631</td>
<td>136</td>
<td>30–400</td>
</tr>
<tr>
<td>TSH (mU/L)</td>
<td>3.87</td>
<td>2.9</td>
<td>0.27–4.2</td>
</tr>
<tr>
<td>Free T4 (ng/L)</td>
<td>12.4</td>
<td>12.1</td>
<td>8.9–17.1</td>
</tr>
<tr>
<td>WBC (10⁶/uL)</td>
<td>9.78</td>
<td>10.48</td>
<td>3.8–10</td>
</tr>
<tr>
<td>RBC (10⁶/uL)</td>
<td>2.59</td>
<td>4.82</td>
<td>4.3–5.7</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>95</td>
<td>129</td>
<td>132–173</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>28.9</td>
<td>35.7</td>
<td>40–52</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>111.7</td>
<td>74</td>
<td>80–95</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>330</td>
<td>362</td>
<td>310–370</td>
</tr>
<tr>
<td>Trombocyte (10³/uL)</td>
<td>400</td>
<td>283</td>
<td>150–400</td>
</tr>
</tbody>
</table>

AST: Aspartate transaminase; ALT: Alanine aminotransferase; UIBC: Unsaturated iron binding capacity; TSH: Thyroid stimulating hormone; WBC: White blood cell; RBC: Red blood cell; MCV: Mean corpuscular hemoglobin; MCHC: Mean corpuscular hemoglobin concentration.

Table 1. Test results of the patients

![Figure 1. Unmeasurable HbA1c value of cases.](image)

HbA1c: hemoglobin A1C.
with chronic hemolysis (thalassemia, glucose-6-phosphate dehydrogenase deficiency) and patients treated with iron or erythropoietin [6–9].

Hemoglobinopathy: HbA1c levels can be measured high or low in patients with hemoglobin variants depending on the methodology [10].

Chronic kidney disease: HbA1c levels can be altered by advanced chronic kidney disease, hemodialysis, and erythropoietin treatment [11].

All hemoglobin disorders that occur as a result of a genetic disorder are called hemoglobinopathies. Hemoglobinopathies are examined in two main groups; thalassemias and hemoglobin variants. Thalassemia syndromes occur when the defect in the genes causes synthesis disorders without affecting the globin structure. Hemoglobin variants occur when the defect in the genes causes abnormal globin synthesis [12].

Hemoglobin S, associated with sickle cell anemia, is caused by a specific mutation in the beta-globin (HBB) gene (β6 GAG>GTG Glu>Val). This variant can be found in heterozygous (AS, carrier) or homozygous states (SS, patient). The homozygous (SS) form is the most commonly seen form in sickle cell anemia; however, compound heterozygosity of variants of β-thalassemia (Sβ0 and Sβ+) and Hb C (SC) can also be seen in patients showing signs and symptoms of sickle cell anemia [13]. Hemoglobin Sβ-thalassemia occurs with the co-inheritance of HbS and β-thalassemia alleles. HbS and HbA ratios depend on whether the thalassemia allele is β+ or β0 type. Hemoglobin electrophoresis shows 60–90% Hb S, 0–30% Hb A, 1–15% Hb F, and 3.5–6% Hb A2 for Hb Sβ+ thalassemia and 80–95% Hb S, 0% Hb A, 1–15% Hb F, and 3.5–6% Hb A2 for Hb Sβ0 thalassemia [13]. Hemoglobin SC, which has the highest prevalence in West Africa, occurs with the co-inheritance of HbS and HbC alleles. HbSC, which has more target cells and fewer sickle cells in blood smear tests, causes a mild version of sickle cell anemia. Hemoglobin electrophoresis shows 50% Hb S, 0–30% Hb A, 1–7% Hb F, and a normal ratio of HbA2 for HbSC [13]. In our cases, HbA1c values were not measurable by our instrument (Adams A1C HA-8180V), but with another HPLC-based analysis (Adams A1C HA-8180T), HbSβ+ and HbSC were detected in case 1 and case 2, respectively. Genetic analysis was also recommended for the patients to confirm the diagnosis. Macrocytic anemia (Hemoglobin: 95 g/dL and MCV: 111.7 fL) and microcytic anemia (Hemoglobin: 129 g/dL and MCV: 74 fL) were observed in hematology tests from case 1 and case 2, respectively. Tirthankar et al. [14] presented a case whose HbA1c test result was zero by an ion-exchange HPLC method on a Bio-Rad D10 analyzer. They investigated a variant hemoglobin (Hb) by capillary electrophoresis of Hb. They found an elevated peak which was suggestive of HbE disorder. Hegde et al. [15] reported a case whose HbA1c was measured zero by an ion-exchange high-performance liquid

Figure 2. Reevaluated sample of the cases.
chromatography (HPLC) method on a Bio Rad D10 analyzer. The chromatogram showed a large unknown peak with an area of 82.4% and DNA sequencing confirmed HbD Punjab mutation. Fructosamine should be recommended for clinical use in special populations where HbA1c is less useful. John et al. [16] investigated the clinical use of fructosamine and HbA1c in diabetes mellitus compared to control groups. They found that serum fructosamine should be considered a valid diagnostic marker.

Conclusion

HbA1c results would not be obtained from HbSS, HbSβ+, HbSC, and HbCC patients since these patients would not have any HbA. Alternative test forms such as fructosamine testing should be considered for patients whose HbA is unmeasured in the chromatogram or when HbA1c results are unobtainable by any measurement method.

Informed Consent: Written informed consent was obtained from the patient for the publication of the case report and the accompanying images.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Peer-review: Externally peer-reviewed.

References

5. Chen Z, Shao L, Jiang M, Ba X, Ma B, Zhou T. Interpretation of HbA1c lies at the intersection of analytical methodology, clinical biochemistry and hematology (Review). Exp Ther Med 2022;24:707. [CrossRef]
15. Hegde SN, Srikousthubha MS, Anupama YJ. A case of undetectable glycated hemoglobin (HbA1C). QJM 2018;111:567–68. [CrossRef]