

Comparative Efficacy of Different Irrigant Activation Techniques for Irrigant Delivery Up to the Working Length of Mature Permanent Teeth: A Systematic Review and Meta-Analysis

Ram Surath KUMAR,¹ D Anil ANKOLA,¹ Mateen PEERZADE,²

Roopali SANKESHWARI,¹ O Vinuta HAMPIHOLI,³ Atrey PAI KHOT,¹ O Mehul Ajit SHAH¹

¹Department of Public Health Dentistry, KLE VK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, India

²Department of Conservative Dentistry and Endodontics, KLE VK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, India

³Department of Periodontics, KLE VK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, India

ABSTRACT

This systematic review aimed to establish whether various irrigant activation techniques (IATs) result in greater penetration of irrigant up to the working length. The MEDLINE, Scopus and Cochrane Library electronic databases were searched to determine the difference in irrigant penetration depth in the main canal following the use of manual dynamic activation (MDA), sonic irrigation (SI), passive ultrasonic irrigation (PUI), and apical negative pressure irrigation technique (ANP) in comparison with conventional needle irrigation technique (CNI) in mature permanent teeth. Meta-analysis was performed for straight canals as well as curved canals in addition to subgroup analyses for a) Individual IATs in comparison with CNI, b) Comparison of PUI v ANP and SI v ANP in the straight canals, c) comparison of different IATs performed in straight and curved canals. The outcome was presented as effect size: standardized mean difference (SMD) and percentage difference (% diff) of irrigant penetration up to the working length (WL) alongside 95% confidence intervals using chi-square analysis. Of the 840 records screened, 20 studies were included in the systematic review and 17 studies were included in the meta-analysis. It revealed IATs had significant improvement in irrigant delivery up to the WL in straight (% diff: 51.94%, 95% CI: 39.20-64.67%) and curved canals (SMD: 1.08, 95% CI: 0.64-1.52) over CNI. The subgroup analysis revealed ANP was the most effective and significant technique followed by PUI, SI and MDA techniques in straight canals (% diff: 91.70%, 95% CI: 75.63-107.77%) and curved canals (SMD: 1.45, 95% CI: 0.77–2.13). IATs improve irrigant penetration when compared to CNI technique. In both straight and curved canals, ANP is the most effective in delivering the irrigant up to the WL followed by PUI, SI and MDA techniques. Hence adaptation of recent IATs in routine endodontic practice is recommended.

Keywords: Apical negative pressure, irrigant penetration, passive ultrasonic irrigation, root canal therapy, sonic irrigation, ultrasonics

HIGHLIGHTS

- The irrigant penetration shows vast improvement with IATs when compared to CNI.
- In both straight and curved canals, ANP is the most effective IAT in delivering the irrigant up to the WL followed by PUI, SI and MDA techniques.
- It is beneficial to incorporate IATs in routine endodontic practice.

INTRODUCTION

The focus of successful endodontic therapy is dependent on the complete elimination of microorganisms which is the main aetiology for pulpitis and apical periodontitis (1). The goals of endodontic therapy are to shape the canal, eliminate infected dentine, permit an adequate supply of irrigant to the entire root canal sys-

Please cite this article as:

Kumar RS, Ankola A, Peerzade M, Sankeshwari R, Hampiholi V, Pai Khot A, Shah MA. Comparative Efficacy of Different Irrigant Activation Techniques for Irrigant Delivery Up to the Working Length of Mature Permanent Teeth: A Systematic Review and Meta-Analysis. Eur Endod J 2023; 8: 1-19

Address for correspondence:

Atrey J Pai Khot Department of Public Health Dentistry, KLE VK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, India E-mail: atreypaikhot01@gmail.com

Received March 22, 2022, Revised July 07, 2022, Accepted November 21, 2022

Published online: January 26, 2023 DOI 10.14744/eej.2022.87587

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. tem, promote apical healing in infected root canals and maintain the integrity of the tooth (2). The anatomy of the curved root canal impairs the cleaning efficiency (3). Hence, various irrigant activation techniques (IATs) aim to enhance the cleaning process and lower the microbial load (4).

There are two factors typically linked with effective irrigation the irrigant and the delivery method (5). Ideal requisites of root canal irrigants are broad antimicrobial spectrum, neutralization of endotoxins, smear layer removal and dissolution of vital pulp and necrotic pulpal remnants (6). Although sodium hypochlorite (NaOCI) is the gold standard for its antimicrobial activity and tissue dissolving characteristics, it does not remove the smear layer (7). Thus, NaOCI has been utilized in combination with ethylenediamine tetra acetic acid (EDTA), which helps to remove the smear layer generated during instrumentation (8).

Root canal irrigation methods can be classified into two major types: manual techniques and machine-assisted irrigation activation techniques (9). Manual techniques include conventional needle irrigation technique (CNI) and manual dynamic activation (MDA) with gutta-percha (GP) cones or files (10). Most extended machine-assisted irrigation activation techniques are sonic irrigation technique (SI), passive ultrasonic irrigation technique (PUI), and apical negative pressure irrigation technique (ANP) (10).

The use of these techniques enhances the flow and distribution of irrigating solutions and results in better canal debridement when compared with CNI (9). CNI is not efficient in cleaning the apical third of the canal as it is confined to the level of needle penetration (11). MDA is a simple as well as a cost-effective method of activating irrigants. It uses a well-fitting GP cone that is repeatedly inserted into an instrumented root canal in order to eliminate the apical vapour lock (9). SI is based on sonic energy which helps break smear layer and biofilm through hydrodynamic phenomenon producing cavitation and acoustic streaming. This results in extensive cleaning and disinfection (12, 13). PUI also promotes cavitation by the transfer of microcurrents through ultrasonic waves with its blunt tip (14). It eliminates microorganisms, smear layer, and debris without exceeding the apical constriction (15). ANP is a new technique of delivering irrigants into the root canal that minimizes the risk of irrigant extrusion (16). Irrigants are delivered by a master delivery tip within the pulp chamber, and a small suction tip placed up to the working length (WL) creates the necessary apical negative pressure to drive the irrigant all along the extent of the root canal (16–18).

Effective irrigation is assured only when the irrigant is activated upon contact with the whole root canal system (9). The essential requirements of successful endodontic therapy include dissolution of pulpal remnants and thorough removal of microorganisms and their by-products from the root canal system especially the apical third (19). As a consequence, mechanical instrumentation in conjunction with chemical disinfection will lead to improved canal debridement (20). Therefore, complete disinfection before obturation needs to be ensured. Nonetheless, controversy remains about the effectiveness of the above-mentioned IATs in the apical third of

straight and curved canals. Thus, it is essential to know which among the various IATs could be used effectively to deliver the irrigant up to the WL.

Objectives

The aim of the systematic review was to establish the effectiveness of different IATs and their irrigant delivery up to the WL of mature permanent teeth when compared to CNI. Moreover, this review also aimed to identify the efficacy of individual IATs and their irrigant delivery up to the WL in straight and curved canals.

Review question

Are IATs more effective than the conventional method of irrigation for the irrigant delivery up to the WL for mature permanent teeth?

Null hypothesis: There is no difference in the irrigant penetration in main canal up to the WL when compared to CNI with current IATs.

MATERIALS AND METHODS

Protocol and Registration

The current systematic review was prepared in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (The PRISMA 2020 statement: an updated guideline for reporting systematic reviews) (21). This systematic review was prepared and registered in the PROSPERO (International Prospective Register of Systematic Reviews) with the registration number - CRD42021247430.

PICOST Format

Population (P): Studies on mature permanent maxillary or mandibular teeth.

Interventions (I): Manual dynamic activation (MDA), Sonic irrigation (SI), Passive ultrasonic irrigation (PUI), and Apical negative pressure irrigation technique (ANP).

Comparison (C): Conventional needle irrigation technique (CNI).

Outcome (O): Penetration of irrigant up to the WL as assessed using the direct observation/radiographic method.

Study designs (S): In vivo, ex vivo and in vitro studies.

Timeframe (T): Studies published between 1st January 2000 and 31st May 2022.

Eligibility Criteria

Inclusion criteria:

- 1. Interventional studies inclusive of at least one of the IATs as the trial arm.
- 2. Studies evaluating the efficacy of irrigant penetration up to the WL, following the use of any of the aforementioned IATs using the direct observation/radiographic method.
- 3. Studies using NaOCI with or without EDTA as an irrigant.
- 4. *In vivo* studies inclusive of patients undergoing primary endodontic therapy.
- 5. Ex vivo/in vitro studies including extracted human teeth.

Exclusion criteria:

- 1. Studies conducted on root-filled teeth, resin blocks, animal teeth, and open canal systems.
- 2. Studies inclusive of retreatment cases.
- 3. Case reports, case series, review articles, animal studies, commentaries, and letters to the editor.

Information Sources

Formally published research in endodontics was searched in all the electronic databases with no language constraints, which included the following: MEDLINE (via PubMed), Scopus, and Cochrane Library. The additional search methods featured reference list follow-up on all included articles, Clinical Trials Registry- India (CTRI), Google Scholar, and hand searches of the Journal of Endodontics and International Endodontic Journal. The literature search was performed by two independent reviewers namely RSK and MP.

Search Strategy

The search strategy structure adopted was based on a PICOstyle approach with medical subject headings (MeSH) and text words related to the PICO format and research question. Synonyms, keywords and indexed terms were selected using the authors' knowledge, current literature, and indexed databases to build on these headings. The search strategy was then devised using truncations and boolean operators ('OR', 'AND') and modified for each database, taking into account both sensitivity and specificity (Table 1).

Selection Process

Two reviewers (RSK and MP) independently compared the search results to ensure completeness. Zotero reference management software for Windows, Version 5.0.96 (Corporation for Digital Scholarship, Virginia, USA) was utilized as a reference manager. The reviewers identified, screened, and read the full-text articles to decide on the eligibility criteria. An inter-examiners agreement was calculated using Cohen's kappa statistics (0.92). Disagreements among the reviewers were resolved by a third reviewer (AA). No automation tool was used in the selection process.

Data Collection Process

Predetermined data items were extracted and prepared by RSK in Microsoft Excel, version 16.43 (Microsoft Corp., Redmond, WA, USA) and assessed by the other reviewer (MP). Any disagreement between the reviewers was resolved through discussion.

Data Items

Data extraction was based on a previously published systematic review (22). It was later adapted for evaluating the irrigant penetration depth in the main canal as per PE Căpută et al. (22). The Data items pertaining to study design, specimen selection, randomization, instrumentation, irrigation and IATs used, and outcome assessment were extracted. All data are summarized in Table 2.

Study Risk of Bias Assessment

Each study was critically assessed independently by two reviewers (RSK and MP) as per a predetermined set of criteria

based on the previously published systematic review (22). It was later adapted for evaluating the irrigant penetration depth in the main canal as per PE Căpută et al. (22). It consists of 28 questions under four major subheadings with a yes or no/unclear response scoring 1 or 0 points, respectively. The check-list for a summary score was tabulated for each study and the risk of bias was graded as potentially high risk (score <50%), medium risk (score 50%–75%), and low risk (score >75%). The quality requirements during the risk of bias assessment of included studies are presented in Appendix 1.

3

Effect Measures

The main effect measures were

- 1. The mean distances between the WL and the maximal irrigant penetration.
- 2. The percentage of irrigant penetration depth up to the WL.

The outcome waspresented as standardized mean differences (SMD)/percentage difference (% diff) of the irrigant penetration up to the WL alongside 95% confidence interval (CI) using chi-square analysis.

Synthesis Methods

Data synthesis: A Meta-analysis was performed using the STATA[®] SE 16.1 for Windows (StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC, Texas, USA), in order to facilitate direct comparisons across the studies. The Cochran's Q test and I² index were used for the identification of heterogeneity across the studies. In addition to this, subgroup meta-analyses were also conducted to explore heterogeneity. Significance was set at P≤0.05.

- a) Subgroup analysis and comparison of individual IATs with CNI
 - i. In straight canals
 - ii. In curved canals
- b) Subgroup analysis and comparison of ANP with PUI and with SI in straight canals.
- c) Subgroup analysis and comparison of IATs performed in both straight and curved canals.

Due to the high heterogeneity, the random effect model was used to conduct a meta-analysis. The weight for each study and estimates with upper and lower CI was obtained. Egger's regression test and funnel plot analysis with a 95% CI were carried out to identify any evidence of publication bias by determining the number of studies that could be missing using the trim and fill procedure.

RESULTS

Study Selection

A total of 840 records were found from the initial search using a combination of an electronic and manual search. There were 586 duplicates removed, and 254 studies evaluated against the inclusion criteria (Fig. 1). Following a screening of the title and abstract, 43 studies (6 *in vivo*, 6 *ex vivo* and 31 *in vitro*) were eligible for full-text assessment. Finally, 20 studies [4 *in vivo* (15, 23–

PICO No. of Search Search strategy input guery found items Ρ #1 (patients[Title/Abstract]) OR (mature permanent teeth[Title/Abstract]) OR (mature permanent tooth 5,120 [Title/Abstract]) OR (mature apex[Title/Abstract]) OR (mature apices[Title/Abstract]) OR (permanent molar* [Title/Abstract]) OR (permanent premolar*[Title/Abstract]) OR (permanent canine*[Title/ Abstract]) OR (permanent incisor*[Title/Abstract]) OR (incisor[MeSH Terms]) OR (bicuspid[MeSH Terms]) OR (cuspid[MeSH Terms]) OR (Molar[MeSH Terms]) OR (dentition, permanent[MeSH Terms]) AND (Root Canal Therapy[MeSH Terms]) AND ("2000/01"[Date - Publication]: "2022/05"[Date - Publication]) #2 la (passive ultrasonic irrigation[Title/Abstract]) OR (ultrasonic irrigation[Title/Abstract]) OR (continuous 20,480 ultrasonic[Title/Abstract]) OR (PUI[Title/Abstract]) OR (intermittent ultrasonic[Title/Abstract]) OR (ultrasonics [MeSH Terms]) OR (Ultrasonic Therapy [MeSH Terms]) AND ("2000/01" [Date - Publication]: "2022/05"[Date-Publication]) #3 lb (sonic irrigation[Title/Abstract]) OR (endoactivator[Title/Abstract]) OR (sonication[MeSH Terms]) AND ("2000/01"[Date - Publication]: "2022/05"[Date - Publication]) #4 lc (apical negative pressure[Title/Abstract]) OR (endovac[Title/Abstract]) OR (suction[MeSH Terms]) OR 4,751 (vacuum[MeSH Terms]) AND ("2000/01"[Date - Publication]: "2022/05" [Date - Publication]) #5 Id (manual dynamic activation[Title/Abstract]) OR (manual dynamic irrigation[Title/Abstract]) OR (gutta-11,114 percha[MeSH Terms]) AND ("2000/01"[Date - Publication]: "2022/05" [Date - Publication]) С #6 (conventional needle irrigation[Title/Abstract]) OR (needle irrigation[Title/Abstract]) OR (positive 1,660 pressure irrigation[Title/Abstract]) OR (conventional irrigation[Title/Abstract]) OR (positive pressure irrigation[Title/Abstract]) OR (passive irrigation[Title/Abstract]) OR (syringe irrigation[Title/Abstract]) OR (conventional syringe irrigation[Title/Abstract]) OR (syringe[MeSH Terms]) OR (Needles[MeSH Terms])AND (therapeutic irrigation[MeSH Terms]) AND ("2000/01"[Date - Publication]: "2022/05" [Date-Publication]) #7 0 (apical third[Title/Abstract]) OR (irrigant penetration[Title/Abstract]) OR (working length[Title/ 377 Abstract]) OR (patency[Title/Abstract]) OR (Radiography, Dental, Digital[MeSH Terms]) OR (dye 678 [Title/Abstract]) OR (contrast media[Title/Abstract]) OR (contrast solution[Title/Abstract]) AND (Tooth Apex[MeSH Terms]) AND ("2000/01"[Date - Publication]: "2022/05"[Date - Publication]) 205 #8 #1 AND #2 #9 #1 AND #3 43 #10 #1 AND #4 46 #11 #1 AND #5 530 #12 #1 AND #6 72 #13 #1 AND #7 234 #14 #2 AND #7 40 #15 #3 AND #7 14 #16 #4 AND #7 19 #5 AND #7 91 #17 #18 #6 AND #7 29 25 #19 #2 AND #3 AND #4 #20 #3 AND #4 AND #5 5 7 #21 #4 AND #5 AND #6 #22 #5 AND #6 AND #2 11 #23 #6 AND #2 AND #3 43 #2 AND #3 AND #4 AND #5 #24 5 #25 #2 AND #3 AND #4 AND #5 AND #6 3 #26 1 #1 AND #2 AND #3 AND #4 AND #5 AND #6 #27 #1 AND #2 AND #3 AND #4 AND #5 AND #6 AND #7 0

TABLE 1. PubMed database search

P: population, la: intervention a – passive ultrasonic irrigation, lb: intervention b – sonic irrigation, lc: intervention c – apical negative pressure irrigation, ld: intervention d - manual dynamic activation, C: comparator – conventional needle irrigation, O: outcome

25), 3 *ex vivo* (26–28) and 13 *in vitro* (12, 13, 29–37, 17, 18)] were included in the systematic review, thus qualifying for inclusion and 23 studies were excluded (the reasons for the exclusion are outlined in Appendix 2). In the included studies, thirteen studies reported the irrigant penetration up to the WL in terms of percentage (12, 17, 34–36, 18, 24, 25, 28–30, 32, 33). Seven studies (13, 15, 23, 26, 27, 31, 37) reported the irrigant penetration in terms of mean and standard deviation. Retrieving the raw data from the authors was attempted through e-mail com-

munication, but only Sáinz-Pardo et al. (27) responded with the raw data. Hence a total of 17 studies [4 *in vivo* (15, 23–25), 2 *ex vivo* (27, 28) and 11 *in vitro* (12, 17, 37, 18, 29, 30, 32–36)] were included in the meta-analysis (Fig. 1). No automation tools were used for the inclusion and exclusion of records.

Study Characteristics

Table 2 summarizes the characteristics of the 20 included studies. All the studies were published between the years 2010 and

TABLE 2. Sur	nmary of st	tudy characteris	tics of all the in	cluded studies th.	at evaluated the ii	rrigant penet	ration up to the	working len	gth				
Study	Study design	Control group - CNI (<i>n</i>)	Test groups (<i>n</i>)	Other groups evaluated	Sample (Curvature)	Working length (mm)	Method used to simulate periapical tissues	Patency with 10 K-file	File system	Apical preparation size/taper	Irrigation (mL)	Contrast solution preparation	Method of assessment
S DPA et al., 2022 (37)	In vitro	(15)	SI (15) MDA (15)	SVN	Single-rooted premolars (20°- 40°)	16	Wax	>	ProFit S3 rotary	30/.06	3% NaOCl (2 mL)	lohexol (Omnipaque), Ireland	Radiographic
Castelo-Baz et al., 2021 (29)	In vitro	St. canal (20), Curved canal (20)	PUI St. canal (20) PUI curved	CANUI-St, CANUI- Curved	Incisors (St.+Curved 20°-30°)	16	Wax	~	ProTaper Next (Dentsply)	40/.06	5% NaOCl (3 mL) 17% EDTA	(cc.ce) 20% Chinese ink, Germany	Direct observation
Abrar S et al., 2019 (23)	In vivo	(20)	ANP (20)	SAF	Mandibular molars	Unclear	NA	Unclear	Mtwo (VDW)	35/.04	5% NaOCl (2 mL)	lohexol (Omnipaque),	Radiographic
Souza et al., 2019 (30)	In vitro	(20)	PUI (20)	CUI, EC	(curveu) Single rooted	15	Wax	~	ProTaper universal	40/.05	5.25% NaOCl (3 mL) EDTA (3 mL)	irelarid 20% Nankin ink, Mathodande	Direct observation
Khare et al., 2017 (31)	In vitro	(12)	PUI (12) MDA (12)	I	Single- rooted (Straight)	14	Wax	~	(Videntaper ProTaper universal (Dentsply)	25/.08	5.25% NaOCI (3 mL) 17% EDTA	neurenanus 10% ink marker, USA	Direct observation
Dhaimy S et al., 2016	Ex vivo	(60)	MDA (60)	Pl with endodontic	Maxillary incisors	Unclear	Mixture of plaster	~	iRace	25/.04	2.5% NaOCI (NR)	TELEBRIX 35	Radiographic
(20) Helmy et al., 2016 (13)	In vitro	(10)	SI (10)		Mandibular molars (25° or more)	Unclear	Wax	Unclear	Micro- Mega BFV∩-<™	35/.06	5.25% NaOCl (2 mL)	Optiray TM 320, USA	Radiographic
Kamra et al., 2016 (24)	In vivo	(15)	PUI (15)	Without patency PUI & CNI	Mandibular molars (straight)	Unclear	NA	~	ProTaper (Dentsply)	30/.09	5.25% NaOCl (1 mL)	IV contrast medium containing iodine	Radiographic
Castelo-Baz et al., 2016 (32)	In vitro	(20)	PUI (20)	CUI	lncisors (20°-30°)	16	Wax	~	GTX (Dentsply)	30.06	5% NaOCl (3 mL) 10% EDTA	(lopamidol) 20% Chinese ink, Germany	Direct observation
Kanumuru et al., 2015	In vitro	(15)	PUI (15) SI (15)	25/.02 RACE	Single rooted (Straicht)	I	Elastomer	~	ProTaper (Dentsply)	30/.09	5.25% NaOCl (1.5 mL)	40% Indian ink (2:3)	Direct observation
Sáinz-Pardo et al., 2014 (27)	Ex vivo	(10)	SI (10) PUI (10)	CNI, SI, PUI (Open system)	(Straight)	17	Paste-paste adhesive	~	ProFile (Dentsply)	30/.06	4.25% NaOCl (1.5 mL) 17% EDTA	40% lomeron 300°, Italy	Radiographic
Merino et al., 2013 (36)	In vitro	(4)	PUI.04 taper (15), SI .04 taper (15)	PUI.08, SI.08, CNI (open system)	Mandibular molars (30°-40°)	13.5	Wax	≻	GT rotary (Dentsply)	30/.04	5.25% NaOCl (1.5 mL)	60% Radialar-280 (Spain)+5.25% NaOCI (50·50)	Radiographic
Pawar et al., 2013 (33)	In vitro	(20)	PUI (20), SI (20), MDA	AI (F-file)	Single rooted (NR)	Unclear	Wax	≻	WaveOne (Dentsply)	25/.08	5% NaOCl (NR)	Methylene blue	Direct observation

5

TABLE 2. Col	٦t.												
Study	Study design	Control group - CNI (<i>n</i>)	Test groups (<i>n</i>)	Other groups evaluated	Sample (Curvature)	Working length (mm)	Method used to simulate periapical tissues	Patency with 10 K-file	File system	Apical preparation size/taper	Irrigation (mL)	Contrast solution preparation	Method of assessment
Spoorthy et al., 2013 (18)	In vitro	(16)	PUI (16), ANP (16)	ANP+PUI	Incisors (Straight)	Unclear	Wax	Unclear	ProTaper universal (Dentsply)	40/.05	5.25% NaOCl (3 mL) 17% EDTA	40% Indian ink, India	Direct observation
Castelo-Baz et al., 2012 (34)	In vitro	(20)	PUI (20)	CUI	Incisors (Straight)	16	Wax	Unclear	ProTaper (Dentsply)	30/.09	(3 mL) 5% NaOCl (3 mL) 10% EDTA	20% Chinese ink, Germany	Direct observation
de Gregorio et al., 2012 (35)	In vitro	(15)	ANP (15)	SAF	Canines (Straight)	17	Wax	~	K- Flexofiles (Dentsply)	35/.02	(5 mL) 5.25% NaOCI (5 mL) 17% EDTA	10% ink marker, France	Direct observation
Munoz and Camacho- Cuadra,	In vivo	(10)	PUI (10), ANP (10)	1	Mandibular molars (25°)	I	AN	Unclear	Mtwo (VDW)	35/.04	5.25% NaOCI (2 mL)	lohexol (Omnipaque), Ireland	Radiographic
2012 (CI) Vera et al., 2011 (25)	ln vivo	(21)	PUI (21)	PUI without patency	Maxillary posteriors, mandibular molars (NR)	Between 19 and 21	NA	≻	ProTaper (Dentsply)	30/.09	5.25% NaOCI (1 mL)	IV contrast medium containing ioversol (Claritrast 300)	Radiographic
de Gregorio et al., 2010 (17)	In vitro	(20)	SI (20), PUI (20), ANP (20)	Al (F file)	Single-rooted (Straight)	15	Wax	~	Profile rotary (Dentsply)	40/.06	5.25% NaOCl (3 mL) 17% EDTA	(cc::4) 10% Kuraray caries detector solution,	Direct observation
Bronnec F et al., 2010 (28)	Ex vivo	(30)	MDA (30)	1	Mandibular molars (33.7°)	19	Wax	>	ProTaper rotary (Dentsply)	20/.07	(1 mL) (1 mL)	Hypaque Hypaque Sodium 50% Health Inc, USA)	Radiographic
NR: Not repor negative ultra hypochlorite,	ted, NA: Noi sonic irrigat V: Intravasc	t applicable, Y: Ye: tion, MDA: Manua ular	s, St: Straight, Ch al dynamic activ:	ll: Conventional n∈ ation, SVN: Side-ve	edle irrigation tech inted needle, AI: Ac	nnique, PUI: Pa tive irrigation.	assive ultrasonic i , PI: Passive irrigat	rrigation, Sl: S tion, CUI: Con	sonic irrigation, itinuous ultraso	ANP: Apical nega nic irrigation, EC:	ative pressure irrig Easy clean, SAF: S	lation, CANUI: Con ielf-adjusting files,	inuous apical NaOCI: Sodium

Figure 1. PRISMA flow diagram

2022. Studies were interventional type in which 4 studies were in vivo (15,23-25), 3 studies were ex vivo (26-28) and the remaining 13 studies were of in vitro design (12, 13, 35-37, 17, 18, 29–34). The evaluation of outcome was done using direct observation method in 10 studies (12, 17, 18, 29-35), and using radiographic observation method in 10 studies (13, 15, 23-28, 36, 37). In the direct observation method, the assessment of the outcome is based on direct visualization of the penetration of the dye into the main canal. Standardized decalcification, clearing, and re-hardening protocol for the samples by Robertson and Leeb (38) and a modified approach of the same by de Gregorio et al., (39) were used. The samples were evaluated by direct observation of images obtained under the operating microscope and the orientation of the recording microscope was standardized to reproduce the same image in all groups, using the criteria described by de Gregorio et al., (17). In the radiographic observation method, a digital radiographic image was attained with the irrigating contrast solution (ICS) inside the canal. The penetration of ICS was then

measured using various image editing tools. A summary of the characteristics of CNI and IATs in the included studies is presented in Tables 3 and 4, respectively.

Risk of Bias in Studies

The Kappa score for the interrater analysis was 0.87. A summary of the risk of bias assessment of the included studies is presented in Table 5. None of the included studies met all of the criteria. The average quality of the evidence provided by the included articles was found to be moderate. The overall risk of bias in the included studies was 81.4% (61%–93%) indicating a 'low risk of bias'.

Results of Individual Studies

Table 6 summarizes the results of all the individual studies. The results of six studies (13, 15, 23, 26, 31, 37) were presented in terms of mean. Among these, five studies (13, 15, 23, 31, 37) presented the distance between the WL and the maximum irrigant penetration in terms of mean in straight and curved

Study			Characteristics of us	ie i		
	Manufacturer	Gauge	End type	Volume (mL)	Duration (s)	Insertion depth from the WL (mm)
S DPA et al., 2022 (37)	NR	26	Open-ended	NR	NR	2
Castelo-Baz et al., 2021 (29)	ProRinse, Dentsply Sirona, USA	30	Side vented	6	60	2
Abrar S et al., 2019 (23)	Miraject Endotec Duo, Germany	27	Side vented	2	120	Deep without binding
Souza et al., 2019 (30)	Ultradent, USA	30	NR	6	60	1
Khare et al., 2017 (31)	Vishal Dentocare, India	31	Double-Side vented	3	60	2
Dhaimy S et al., 2016 (26)	2.5 cc syringe	21	Open-ended	NR	NR	Deep without binding
Helmy et al., 2016 (13)	Vista-Probe TM, Inter- Med, Inc., USA	NR	Side vented	1	NR	Deep without binding
Kamra et al., 2016 (24)	Ultradent, USA	27	Side vented	1	20	2
Castelo-Baz et al., 2016 (32)	ProRinse, Dentsply Sirona, USA	30	NR	6	60	2
Kanumuru et al., 2015 (12)	NR	30	Side vented	1	30	2
Sáinz-Pardo et al., 2014 (27)	Max-i-Probe, Dentsply-Rinn	30	NR	1	30	2
Merino et al., 2013 (36)	NR	30	Side vented	1.5	30	2
Pawar et al., 2013 (33)	NR	25	End vented	NR		2
Spoorthy et al., 2013 (18)	NaviTip, Ultradent, USA	30	Open-ended	1.5	30	2
Castelo-Baz et al., 2012 (34)	ProRinse, Dentsply Sirona, USA	30	Side vented	6	60	2
de Gregorio et al., 2012 (35)	ProRinse, Dentsply Sirona, USA	30	Side vented	NR	30	2
Munoz and Camacho-Cuadra., 2012 (15)	Monoject, Hampshire, UK	27	Side vented	1	30	2
Vera et al., 2011 (25)	Endo-EzeTM, Ultradent, USA	27	Side vented	1	NR	2
de Gregorio et al., 2010 (17)	ProRinse, Dentsply Sirona, USA	30	Side vented	1.5	30	2
Bronnec F et al., 2010 (28)	Monoject, Hampshire, UK	27	Notched tip	1	NR	3

TABLE 3. Characteristics of conventional needle irrigation technique used

canals. Dhaimy et al. (26) calculated the irrigant penetration in straight canal using an index of irrigant penetration (penetration length of the irrigant divided by the WL). The study concluded that MDA using a GP cone permits better penetration of the irrigant over CNI.

Results of Syntheses

IAT vs CNI

In the overall meta-analyses of straight canals, the pooled estimate (% diff) of irrigant delivery up to the WL by the different IATs when compared to CNI was 51.94%, 95% CI: 39.20–64.67% (Fig. 2). In curved canals, the pooled estimate was SMD: 1.08, 95% CI: 0.64–1.52 (Fig. 3a); % diff: 34.29%, 95% CI: 20.83– 47.75% (Fig. 3b). These results revealed significant improvement in the irrigant delivery up to the WL in IATs over CNI.

Subgroup Analysis

- a) Subgroup analysis and comparison of individual IATs with CNI in straight canals: ANP was the most effective and significant IAT for irrigant delivery up to the WL (% diff: 91.70%, 95% CI: 75.63–107.77%) followed by PUI, SI and MDA technique (Fig. 2).
- b) Subgroup analysis and comparison of ANP with PUI and with SI in straight canals: In both of the above, ANP revealed a significant difference in the irrigant penetration (% diff: 52.35%, 95% CI: 35.10–69.59%) (Fig. 4).

- c) Subgroup analysis and comparison of individual IATs with CNI in curved canals: ANP was the most effective and significant IAT for irrigant delivery up to the WL (SMD: 1.45, 95% CI: 0.77–2.13) followed by PUI, SI and MDA technique (Fig. 3a).
- d) Subgroup analysis and comparison of IATs performed in both straight and curved canals: The irrigant penetration of PUI in both straight canals (% diff: 47.96%, 95% CI: 33.10–62.82%) and curved canals (% diff: 41.78%, 95% CI: 26.30–57.27%) did not reveal a significant difference thus attributing to the efficacy of PUI. However, a significant difference was observed in the irrigant penetration of SI in curved canals (% diff: 19.90%, 95% CI: 9.56–30.24%) when compared to straight canals (% diff: 38.40%, 95% CI: 245 27.17–49.62%) (Fig. 5).

Heterogeneity Tests

The overall meta-analyses of the straight canals ($l^2=99.87\%$, P<0.001) and the curved canals ($l^2=96.41\%$; $l^2=97.43\%$, P<0.001) revealed significant heterogeneity. Similarly, significant heterogeneity also existed within the subgroup analyses for irrigant penetration up to the WL. Therefore, the random effects model was used (Figs. 2-5).

Reporting Biases

To look for the presence of publication bias, funnel plot analysis was carried out which included the irrigant penetration up to the WL in straight canals. Funnel plot analysis revealed

9

			Charact	eristics of use			
Irrigant activation techniques used	Study	File size [manufacturer]	Mounting device [Manufacturer]	Activation time for each cycle (s)	Power setting	No. of cycles	Insertion depth from the WL (mm)
Passive ultrasonic irrigation technique	Castelo-Baz et al., 2021 (29)	ISO 15 [ESI file]	EMS, Nyon, Switzerland	20	4	3	1
5	Souza et al., 2019 (30)	20/.01 [Irrisonic]	Jet Sonic, Brazil	20	20%	3	2
	Khare et al., 2017 (31)	ISO 10 [IrriSafe, Satelec]	Satelec, Acteon, France	20	3	3	2
	Kamra et al., 2016 (24)	NR[U-Mani]	Top selector, APOZA	20	5	NR	3
	Castelo-Baz et al., 2016 (32)	ISO 15 [ESI file]	EMS, Nyon, Switzerland	20	6	3	1
	Kanumuru et al., 2015 (12)	ISO 20 [IrriSafe, Satelec]	Suprasson Newtron	20	5	NR	2
	Sáinz-Pardo et al., 2014 (27)	25/.01 [Irri-S	VDW, Germany	30	25	NR	2
	Merino et al., 2013 (36)	ISO 25 (untapered) [Irri-S (VDW)]	VDW, Germany	30	25	NR	2
	Pawar et al., 2013 (33)	ISO 20	NR	30	3	NR	0
	Spoorthy et al., 2013 (18)	ISO 25 [IrriSafe, Satelec]	Suprasson P5 Booster, Satelec, Acteon France	30	5	NR	1
	Castelo-Baz et al., 2012 (34)	ISO 15 [IrriSafe,	Satelec, Acteon, France	20	6	3	1
	Munoz and Camacho-	ISO 20 and 25	NSK, Japan	30	NR	NR	0
	Vera et al., 2011 (25)	NR [SybronEndo]	MiniEndo, SybronEndo	20	5	NR	3
	de Gregorio et al., 2010 (17)	ISO 20 [IrriSafe, Satelec]	Satelec, Acteon, France	30	3	NR	0
		Volume (mL)	Activation time (s)	Macrocannula from the WL	depth	Microca from th	annula depth e WL (mm)
Apical Negative pressure technique	Abrar S et al., 2019 (23)	NR	NR	Middle third of t canal	he	0	
(EndoVac®, Discus	Spoorthy et al., 2013 (18)	1.5	30	Pulp chamber		0	
Dental, Culver City, CA)	de Gregorio et al., 2012 (35)	NR	30	Coronal third of the canal		0	
	Munoz and Camacho- Cuadra., 2012 (15)	1	30	Pulp chamber		0	
	de Gregorio et al., 2010 (17)	1.5	30	NR		0	
		Power setting (cpm)	Activation time (s)	File size/taper		Insertion from the	n depth e WL (mm)
Sonic Irrigation technique (Dentsply, USA)	S DPA et al., 2022 (37) Helmy et al., 2016 (13) Kanumuru et al., 2015 (12) Sáinz-Pardo et al., 2014 (27) Merino et al., 2013 (36) Pawar et al., 2013 (33) de Gregorio et al., 2010 (17)	10,000 NR 10,000 10,000 10,000 NR 10,000	60 30 30 30 30 30 30 30 30	15/.02 25/.04 25/.04 25/.04 25/.04 25/.04 35/.04		2 Deep wit 2 2 2 0 0	thout binding
		Vertical strokes	Activation time (s)	Gutta-percha co size/taper	one Amj (mn	olitude 1)	Insertion depth from WL (mm)
Manual dynamic	S DPA et al., 2022 (37)	NR	NR	NR	NR		1
Activation	Khare et al., 2017 (31)	100	60	25/.06	2 to	3	NR
	Dhaimy S et al., 2016 (26)	3	3	25/.04	5		1
	Proppose E at $2013 (33)$	INK 2	3U ND	INK/.06	NK		
	biofiliec F et al., 2010 (28)	د	ואוז	20/.00	5		

TABLE 4. Characteristics of different irrigant activation techniques used

NR: Not reported, WL: Working length

			Risk of Bias asses	ssment				
Study	Study design	Study design, specimen selection & randomization	Instrumentation	Irrigation and IATs used	Outcome assessment	Total	Percentage (%)	Risk of bias
S DPA et al., 2022 (37)	In vitro	7/8	3/3	8/13	3/4	21/28	75	Low risk
Castelo-Baz et al., 2021 (29)	In vitro	6/8	3/3	13/13	4/4	26/28	93	Low risk
Abrar S et al., 2019 (23)	In vivo	5/8	2/3	8/13	3/4	18/28	64	Medium risk
Souza et al., 2019 (30)	In vitro	5/8	3/3	13/13	4/4	25/28	89	Low risk
Khare et al., 2017 (31)	In vitro	3/8	3/3	13/13	4/4	23/28	82	Low risk
Dhaimy S et al., 2016 (26)	Ex vivo	4/8	3/3	12/13	3/4	22/28	79	Low risk
Helmy et al., 2016 (13)	In vitro	6/8	2/3	9/13	4/4	21/28	75	Medium risk
Kamra et al., 2016 (24)	In vivo	4/8	3/3	12/13	4/4	23/28	82	Low risk
Castelo-Baz et al., 2016 (32)	In vitro	7/8	3/3	12/13	4/4	26/28	93	Low risk
Kanumuru et al., 2015 (12)	In vitro	6/8	3/3	12/13	4/4	25/28	89	Low risk
Sáinz-Pardo et al., 2014 (27)	Ex vivo	7/8	3/3	11/13	4/4	25/28	89	Low risk
Merino et al., 2013 (36)	In vitro	8/8	3/3	11/13	3/4	25/28	89	Low risk
Pawar et al., 2013 (33)	In vitro	3/8	3/3	9/13	2/4	17/28	61	Medium risk
Spoorthy et al., 2013 (18)	In vitro	5/8	2/3	12/13	4/4	23/28	82	Low risk
Castelo-Baz et al., 2012 (34)	In vitro	6/8	2/3	13/13	4/4	25/28	89	Low risk
de Gregorio et al., 2012 (35)	In vitro	5/8	3/3	9/13	4/4	21/28	75	Medium risk
Munoz and Camacho-Cuadra., 2012 (15)	In vivo	4/8	2/3	11/13	4/4	21/28	75	Medium risk
Vera et al., 2011 (25)	In vivo	5/8	3/3	12/13	4/4	24/28	86	Low risk
de Gregorio et al., 2010 (17)	In vitro	4/8	3/3	12/13	4/4	23/28	82	Low risk
Bronnec F et al., 2010 (28)	Ex vivo	6/8	3/3	10/13	3/4	22/28	79	Low risk

TABLE 5. Risk of bias assessment of the included studies

The numbers represent how many of the requirements were met by each study. High risk of bias (score <50%), medium risk 614 (score 50%–75%), or low risk (score >75%). The overall risk of bias was 81.4% indicating a 'low risk of bias' across studies

the presence of publication bias (Fig. 6). Additionally, Egger's regression test also suggested the presence of publication bias (P<0.001).

DISCUSSION

Overall, the meta-analyses revealed that IATs considerably improved the irrigant penetration up to the WL when compared to CNI. The narrative synthesis does support the hypothesis that IATs result in more irrigant penetration than CNI. This notion is further strengthened by Tay et al. (40) who reported that the irrigation with CNI did not reach up to the WL owing to the presence of an apical vapour lock generated by the organic decomposition of NaOCI into bubbles of carbon dioxide and ammonium that severely impacts the debridement efficiency of CNI. Sáinz-Pardo et al. (27) reported that the percentage of vapour lock formation for CNI (70%) is greater than SI (60%) and PUI (30%).

The effectiveness of individual IATs on an irrigant penetration was analyzed further using subgroup analysis. MDA creates higher intracanal pressure changes by using vertical strokes of a GP cone in the canal which leads to the displacement of the apical air bubble that is responsible for the vapour lock effect resulting in better irrigant penetration (41). However, the major drawback of this method was operator-dependent which could not be standardized, and the frequency of irrigant extru-

sion was higher, resulting in postoperative pain (42). SI helps in eliminating pulp tissue remnants and dentine debris, breaking vapour locks and transferring solutions apically and laterally (27,39). PUI has a synergistic effect on the tissue-dissolving capabilities of NaOCI (43). However, both pose shortcomings like inadvertent contact of the tip to the canal wall due to the size and complex anatomy of the root canal system (44), loss of cleaning efficacy (45), and excessive removal of dentine (46). To overcome the above-mentioned drawbacks, ANP was introduced as it has the maximum irrigant delivery up to the WL, helps eliminate pulp debris (16, 47), and ensures effective disinfection in the apical third (43). This can be accredited to the design of the microcannula of the EndoVac[®] (Discus Dental, Culver City, CA, USA). The micropores in the cannulae ensure that the canal walls are thoroughly cleaned and thus prevent clogging (17). A negative pressure created by the positioning of the microcannula up to the WL helps pull the irrigant supplied by the master delivery tip (17). Thus a steady flow of fresh irrigants is sustained, thereby permitting the efficient exchange of irrigants in the apical third (16, 17). Moreover, ANP minimizes apical irrigant extrusion as compared to CNI (48).

All the included studies were performed in direct comparison with CNI. Apical patency was maintained in the majority of the studies. Vera et al. (25) reported that improved irrigant

TABLE 6. Summary of the results of the individual studies

		Irrigant	penetration reached	up to the WL	
Study	Study design	IATs	Sample size	Straight canal n (%)	Curved canal <i>n</i> (%)
Castelo-Baz et al., 2021 (29)	In vitro	CNI	20	0 (0)	0 (0)
Souza et al., 2019 (30)	In vitro	PUI CNI	20 20	13 (65) 12 (60)	7 (35) -
Kamra et al., 2016 (24)	In vivo	PUI CNI	20 15	16 (80) 7 (46.7)	-
Castelo-Baz et al., 2016 (32)	In vitro	PUI CNI	15 20	12 (80) -	0 (0)
Kanumuru et al., 2015 (12)	In vitro	PUI CNI	20 15	- 9 (60)	8 (40) -
		PUI SI	15 15	15 (100) 15 (100)	-
Sáinz-Pardo et al., 2014 (27)	Ex vivo	CNI PUI	10 10	2 (20) 7 (70)	-
Merino et al., 2013 (36)	In vitro	SI CNI	10 4	4 (40)	- 0 (0)
		PUI SI	15 15	-	10 (66.7) 3 (20)
Pawar et al., 2013 (33)	In vitro	CNI PUI SI	20 20 20	0 (0) 15 (75) 10 (50)	- -
Spoorthy et al., 2013 (18)	In vitro	MDA CNI PUI	20 16 16	5 (25) 4 (25) 6 (37 5)	-
Castelo-Baz et al., 2012 (34)	In vitro	ANP CNI	16 20	16 (100) 0 (0)	-
de Gregorio et al., 2012 (35)	In vitro	CNI	20 15	14 (70) 0 (0)	-
Vera et al., 2011 (25)	In vivo	CNI	21	-	- 6 (28.6)
de Gregorio et al., 2010 (17)	In vitro	CNI PUI ANP	20 20 20	0 (0) 13 (65) 20 (100)	12 (57.1) - - -
Bronnec F et al., 2010 (28)	Ex vivo	SI CNI MDA	20 30 30	8 (40) - -	- 24.4 (81.4) 30 (100)
	Dis	tance between the	WL and maximum ii	rrigant penetration (me	ean±SD)
S DPA et al., 2022 (37)	In vitro	CNI SI MDA	15 15 15		1.23±0.25 0.50±0.18 0.71+0.04
Abrar S et al., 2019 (23)	In vivo	CNI	20	-	1.88±0.35 0.10+0.14
Khare et al., 2017 (31)	In vitro	CNI PUI MDA	12 12 12	2.94±0.48 0.50±0.48	-
Helmy et al., 2016 (13)	In vitro	CNI	10	-	- 3.04±2.01 0.06+0.12
Munoz and Camacho- Cuadra., 2012 (15)	In vivo	CNI PUI ANP	10 10 10	- -	1.51±0.43 0.21±0.25 0.42±0.30
		Index of	irrigant penetration	(mean±SD)	
Dhaimy S et al., 2016 (26)	Ex vivo	CNI MDA	60 60	0.68±0.11 0.88±0.07	-

Index of irrigant penetration = penetration length of the irrigant divided by the working length (WL); Summary of the results of 20 studies evaluated the irrigant penetration reached up to the WL; 14 out of 20 studies represent irrigant penetration up to the WL in the given number of samples (*n*) with percentages (in parentheses) in both straight and curved canals while the reminder of 6 studies' results is demonstrated in terms of mean±standard deviation (SD).

Study	Effect size (95% CI) Weigh (%) (%)
Control (CNI) v PUI	
Castelo-Baz et al. (2021)	64.90 [60.20, 69.60] 5.93
Souza et al. (2019)	20.00 [13.80, 26.20] 5.89
Kamra et al. (2016)	33.30 [24.95, 41.65] 5.82
Kanumuru et al. (2015)	39.90 [33.51, 46.29] 5.88
Sáinz-Pardo et al. (2014)	
Pawar et al. (2013)	74.90 [70.64, 79.16] 5.93
Spooty et al. (2013)	12.50 [4.55, 20.45] 5.84
Castelo-Baz et al. (2012)	69.90 [65.42, 74.38] 5.93
de Gregorio et al. (2010)	64.90 [60.20, 69.60] 5.93
Heterogeneity: τ^2 = 504.94, I^2 = 98.33%, H^2 = 59.89	47.96 [33.10, 62.82]
Test of $\theta_i = \theta_j$: Q(8) = 438.04, p = 0.00	
Control (CNI) v ANP	
Spooty et al. (2013)	74.90 [69.59, 80.21] 5.91
de Gregorio et al. (2012)	99.80 [99.23, 100.37] 5.97
de Gregorio et al. (2010)	99.80 [99.37, 100.23] 5.97
Heterogeneity: τ^{z} = 199.28, I ^z = 99.93%, H ^z = 1505.28	• 91.70 [75.63, 107.77]
Test of $\theta_i = \theta_j$: Q(2) = 84.23, p = 0.00	
Control (CNI) v SI	
Kanumuru et al. (2015)	39 90 [33 51 46 29] 5 88
Sáinz-Pardo et al. (2014)	
Pawar et al. (2013)	
de Gregorio et al. (2010)	39 90 [35 07 44 73] 5 92
Heterogeneity: $\tau^2 = 116.83$, $l^2 = 92.19\%$, $H^2 = 12.80$	38.40 [27.17, 49.62]
Test of $\theta_1 = \theta_1$: Q(3) = 23.13, p = 0.00	
1001010, 0j. a(0) 20110, p 0.00	
Control (CNI) v MDA	
Pawar et al. (2013)	24.90 [20.64, 29.16] 5.93
Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$	24.90 [20.64, 29.16]
Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = .	
Overall	51.94 [39.20, 64.67]
Heterogeneity: τ^{*} = 707.03, I [*] = 99.87%, H [*] = 783.59	
Test of $\theta_i = \theta_j$: Q(16) = 4980.76, p = 0.00	
Test of group differences: $Q_b(3) = 69.27$, p = 0.00	
-50 Random-effects REML model Control Favoured	Comparator Favoured

Figure 2. Forest plot evaluating the percentage difference (% diff) of irrigant penetration up to the working length in straight canals of the mature permanent teeth following the use of IATs when compared to CNI IATs: Irrigant activation techniques, CNI: Conventional needle irrigation technique

penetration depth results from maintaining the apical patency thereby eliminating the vapour lock effect and inhibiting the collection of debris in the apical third of the canal. Furthermore, instruments with varied canal taper ranging from 2–8% with an average of 4% were used in all of the studies. Reduction in canal taper tends to influence the ability of SI to reach up to the WL, whereas it does not influence the ability of PUI in the curved canals (27, 36). Boutsioukis et al. (49) reported that apical preparation size can affect the irrigant penetration depth. Brunson et al. (50) observed that 40/.04 taper preparations resulted in a percentage gain of 44% irrigant penetration. According to Salzgeber RM and Brilliant JD (51), and Chow T (52), flaring of the root canal for greater irrigant penetration requires a minimum of ISO 30. The ideal size of the needle (>27 gauge) facilitates greater penetration of irrigant up to the apical third of the canal (53). It is noteworthy that S DPA et al. (37), Dhaimy et al. (26) and Pawar et al. (33) used large needles (<27 gauge) which does not confer to current clinical standards (53). Majority of the included studies used side-vented needle for irrigation. Boutsioukis et al. (11) reported that an open-ended flat needle was capable of achieving maximum irrigant penetration up to the WL when compared to a side-vented needle. However, the use of the side-vented needle was safer to prevent irrigant extrusion (54). In the studies using PUI, the power setting ranged from 3 to 25 for three cycles, whereas SI was set at a constant of 10,000 cycles per minute for a period of 30–60 seconds. The information about the power settings used was not available in the studies of Helmy et al.(13) and Pawar et al. (33). Al-Jadaa

a Studv		SMD (95% CI)	Weight (%)
Control (CNI) v PUI Munoz and Camacho-Cuadra. (2012) Heterogeneity: $\tau^2 = 0.00$, $I^2 = .%$, $H^2 = .$ Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = .		 Ⅰ 1.30 [0.99, 1.61] ▶ 1.30 [0.99, 1.61] 	19.17
Control (CNI) v ANP Abrar S et al. (2019) Munoz and Camacho-Cuadra. (2012) Heterogeneity: $\tau^2 = 0.22$, $I^2 = 92.73\%$, H Test of $\theta_i = \theta_j$: Q(1) = 13.76, p = 0.00	² = 13.76	 ■ 1.78 [1.61, 1.95] ■ 1.09 [0.77, 1.41] ■ 1.45 [0.77, 2.13] 	20.52 18.97
$\begin{array}{l} \mbox{Control (CNI) v SI} \\ \mbox{S DPA et al. (2022)} \\ \mbox{Heterogeneity: } \tau^2 = 0.00, \ I^2 = .\%, \ H^2 = . \\ \mbox{Test of } \theta_i = \theta_j : \ Q(0) = -0.00, \ p = . \end{array}$		0.73 [0.57, 0.89] 0.73 [0.57, 0.89]	20.58
Control (CNI) v MDA S DPA et al. (2022) Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$ Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = .	•	0.52 [0.39, 0.65] 0.52 [0.39, 0.65]	20.75
Overall Heterogeneity: $τ^2 = 0.24$, $I^2 = 96.41\%$, H Test of $θ_i = θ_j$: Q(4) = 153.54, p = 0.00	² = 27.86	1.08 [0.64, 1.52]	
Test of group differences: $Q_b(3) = 26.90$,	p = 0.00	· · · · · · · · · · · · · · · · · · ·	
Random-effects REML model	Control Favoured5 0 .5	Comparator Favoured	
b			
Study		Effect Size (95% CI) (%)	Weight (%)
Study Control (CNI) v PUI Castelo-Baz et al. (2021) Castelo-Baz et al. (2016) Merino et al. (2013) Vera et al. (2011) Heterogeneity: $r^2 = 235.16$, $l^2 = 96.12\%$ Test of $\theta_i = \theta_j$: Q(3) = 31.71, p = 0.00	H ² = 25.75	Effect Size (95% CI) (%) 34.90 [30.20, 39.60] 39.90 [35.07, 44.73] - 66.60 [54.37, 78.83] 28.50 [22.23, 34.77] 41.78 [26.30, 57.27]	Weight (%) 17.20 17.18 15.34 16.92
$\label{eq:study} \begin{array}{ c c c c c } \hline Study \\ \hline \hline Control (CNI) v PUI \\ \hline Castelo-Baz et al. (2021) \\ \hline Castelo-Baz et al. (2016) \\ \hline Merino et al. (2013) \\ \hline Vera et al. (2011) \\ \hline Heterogeneity: \tau^2 = 235.16, \ I^2 = 96.12\% \\ \hline Test of \ \theta_i = \theta_j: \ Q(3) = 31.71, \ p = 0.00 \\ \hline \hline Control (CNI) v SI \\ \hline Merino et al. (2013) \\ \hline Heterogeneity: \ \tau^2 = 0.00, \ I^2 = .\%, \ H^2 = . \\ \hline Test of \ \theta_i = \theta_j: \ Q(0) = 0.00, \ p = . \\ \end{array}$	H ² = 25.75	Effect Size (95% CI) (%) 34.90 [30.20, 39.60] 39.90 [35.07, 44.73] - 66.60 [54.37, 78.83] 28.50 [22.23, 34.77] 41.78 [26.30, 57.27] 19.90 [9.56, 30.24] 19.90 [9.56, 30.24]	Weight (%) 17.20 17.18 15.34 16.92 15.92
$\label{eq:study} \begin{array}{ c c c c } \hline Study \\ \hline Control (CNI) v PUI \\ \hline Castelo-Baz et al. (2021) \\ \hline Castelo-Baz et al. (2016) \\ \hline Merino et al. (2013) \\ \hline Vera et al. (2011) \\ \hline Heterogeneity: \tau^2 = 235.16, l^2 = 96.12\% \\ \hline Test of \theta_i = \theta_j; Q(3) = 31.71, p = 0.00 \\ \hline Control (CNI) v SI \\ \hline Merino et al. (2013) \\ \hline Heterogeneity: \tau^2 = 0.00, l^2 = .\%, H^2 = . \\ \hline Test of \theta_i = \theta_j; Q(0) = 0.00, p = . \\ \hline Control (CNI) v MDA \\ \hline Bronnec F et al. (2010) \\ \hline Heterogeneity: \tau^2 = 0.00, l^2 = .\%, H^2 = . \\ \hline Test of \theta_i = \theta_j; Q(0) = -0.00, p = . \\ \hline \end{array}$	H ² = 25.75	Effect Size (95% CI) (%) 34.90 [30.20, 39.60] 39.90 [35.07, 44.73] - 66.60 [54.37, 78.83] 28.50 [22.23, 34.77] 41.78 [26.30, 57.27] 19.90 [9.56, 30.24] 19.90 [9.56, 30.24] 18.50 [15.95, 21.05] 18.50 [15.95, 21.05]	Weight (%) 17.20 17.18 15.34 16.92 15.92 17.45
Study Control (CNI) v PUI Castelo-Baz et al. (2021) Castelo-Baz et al. (2016) Merino et al. (2013) Vera et al. (2011) Heterogeneity: $\tau^2 = 235.16$, $I^2 = 96.12\%$ Test of $\theta_i = \theta_j$: Q(3) = 31.71, p = 0.00 Control (CNI) v SI Merino et al. (2013) Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$ Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = . Control (CNI) v MDA Bronnec F et al. (2010) Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$ Test of $\theta_i = \theta_j$: Q(0) = -0.00, p = . Overall Heterogeneity: $\tau^2 = 268.64$, $I^2 = 97.43\%$ Test of $\theta_i = \theta_j$: Q(5) = 122.88, p = 0.00	$H^2 = 25.75$	Effect Size (95% CI) (%) 34.90 [30.20, 39.60] 39.90 [35.07, 44.73] - 66.60 [54.37, 78.83] 28.50 [22.23, 34.77] 41.78 [26.30, 57.27] 19.90 [9.56, 30.24] 19.90 [9.56, 30.24] 19.90 [9.56, 30.24] 18.50 [15.95, 21.05] 18.50 [15.95, 21.05] 34.29 [20.83, 47.75]	Weight (%) 17.20 17.18 15.34 16.92 15.92
Study Control (CNI) v PUI Castelo-Baz et al. (2021) Castelo-Baz et al. (2016) Merino et al. (2013) Vera et al. (2011) Heterogeneity: $r^2 = 235.16$, $l^2 = 96.12\%$ Test of $\theta_i = \theta_j$: Q(3) = 31.71, p = 0.00 Control (CNI) v SI Merino et al. (2013) Heterogeneity: $r^2 = 0.00$, $l^2 = .\%$, $H^2 = .$ Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = . Control (CNI) v MDA Bronnec F et al. (2010) Heterogeneity: $r^2 = 0.00$, $l^2 = .\%$, $H^2 = .$ Test of $\theta_i = \theta_j$: Q(0) = -0.00, p = . Overall Heterogeneity: $r^2 = 268.64$, $l^2 = 97.43\%$ Test of $\theta_i = \theta_j$: Q(5) = 122.88, p = 0.00 Test of $group$ differences: $Q_b(2) = 8.48$,	$H^2 = 25.75$	Effect Size (95% Cl) (%) 34.90 [30.20, 39.60] 39.90 [35.07, 44.73] - 66.60 [54.37, 78.83] 28.50 [22.23, 34.77] 41.78 [26.30, 57.27] 19.90 [9.56, 30.24] 19.90 [9.56, 30.24] 18.50 [15.95, 21.05] 18.50 [15.95, 21.05] 34.29 [20.83, 47.75]	Weight (%) 17.20 17.18 15.34 16.92 15.92 17.45

Figure 3. (a) Forest plot evaluating the standardized mean difference (SMD) of irrigant penetration up to the working length in the curved canals of the mature permanent teeth following the use of IATs when compared to CNI. (b) Forest plot evaluating the percentage difference (% diff) for irrigant penetration up to the working length in the curved canals of the mature permanent teeth following the use of IATs when compared to CNI. SMD: Standardized mean difference, CI: Confidence interval, IATs: Irrigant activation techniques, CNI: Conventional needle irrigation technique

Study			Effect Size (%)	[95% CI]	Weight (%)
PUI v ANP					
Spooty et al. (2013)			62.40 [5	6.46, 68.34]	33.02
de Gregorio et al. (2010)			34.90 [3	0.20, 39.60]	33.51
Heterogeneity: $\tau^2 = 370.66$, $I^2 = 98.02\%$,	$H^2 = 50.62$		48.59 [2	1.64, 75.54]	
Test of $\theta_i = \theta_j$: Q(1) = 50.62, p = 0.00					
SLYAND					
de Cregorie et el (2010)			50 00 I 5	F 07 64 721	22 47
de Gregorio et al. (2010)			59.90[5	5.07, 64.73	33.47
Heterogeneity: $f = 0.00, I = .\%, H = .$		•	59.90[5	5.07, 64.73]	
lest of $\theta_i = \theta_j$: Q(0) = 0.00, p = .					
Overall			52.35 [3	5.10. 69.591	
Heterogeneity: $\tau^2 = 225.20$, $I^2 = 97.06\%$.	$H^2 = 33.96$,,	
Test of $\theta_i = \theta_i$; Q(2) = 72.25, p = 0.00					
T + (), ((), (), (), (), (), (), (), (), (0.40				
lest of group differences: $Q_b(1) = 0.66$, p	0 = 0.42				
Random-effects REML model PUI and	SI Favoured	J 20 50 8	ANP Favo	ured	

Figure 4. Forest plot evaluating the percentage difference (% diff) of irrigant penetration following the use of PUI and SI in comparison with ANP in the straight canals of mature permanent teeth

Cl: Confidence interval, PUI: Passive ultrasonic irrigation, ANP: Apical negative pressure, SI: Sonic irrigation

et al. (55) observed that higher intensity of 29 x 10³ hertz created by PUI promotes better irrigant penetration when compared to the lower intensity of 166 hertz created by SI. Jiang et al. (56) reported that power intensity has a great impact on the degree of irrigant penetration. In the studies using PUI, activation time for each cycle ranged from 20–30 seconds and for SI ranged from 30-60 seconds, whereas ANP was constant at 30 seconds. Nagendrababu et al. (57) and Retsas et al. (58) stated that activation time has a great implication on the degree of irrigant penetration. In PUI, the high flexibility of the ESI file (EMS, Nyon, Switzerland) when compared to the stainless steel ultrasonic tips, favours the irrigant penetration (29, 32). Various passive ultrasonic devices are commercially available of which IrriSafe® (Satelec, France) was the most commonly reported ultrasonic device among the included studies. Similarly, various manufacturers for sonic devices are commercially available. However, EndoActivator® (Dentsply, USA) was the only one to have been clinically evaluated and reported during the period of review. Studies employing ANP used EndoVac[®] (Discus Dental, Culver City, CA, USA). In all the studies that included ANP, microcannula was passively inserted to a depth equal to WL, whereas in the majority of studies using PUI and SI, tips were not inserted to a depth equal to the WL. In all the studies, the needle insertion depth in CNI was reported as being 2 mm or more short of the WL. This could be the reason that CNI is ineffective in cleaning the apical third of the canal due to the confined level of needle penetration (11). Studies reported that needle insertion depth has a great impact on the degree of irrigant penetration (11, 59, 60).

In the studies evaluated by the direct observation method, standardized decalcification, clearing and re-hardening protocols were used. ICS was prepared by mixing dye with NaOCl with a concentration ranging from 10–50%. Information about the concentration of ICS was lacking in number of studies [direct observation method (33) and radiographic method (13, 15, 23, 24, 26, 37)]. These two different types of assessing the outcome could also have introduced bias in the results. Diverse contrast solutions were employed across the studies with various concentrations of different manufacturers which may have introduced bias in the results. Studies by S DPA et al. (37), Kanumuru et al. (12), and Munoz and Camacho (15) found the density, viscosity, and surface tension of the ICS to be similar to that of NaOCI. However, Sáinz-Pardo et al. (27), Helmy et al. (13), Spoorthy et al. (18), and Dhaimy et al. (26) found that the above physical characteristics to be dissimilar which may affect irrigant penetration depth. According to de Gregorio et al. (39), when compared to the direct observation method visually, the radiographic evaluation method evidenced less penetration of ICS because the concentration of ICS may not facilitate detection radiographically. Thus proving the direct observation method to be more sensitive and reliable.

Methodological differences represent a likely source of bias due to one or more of the following reasons. i) Lack of adequate information or reported variations in irrigation procedure across the groups. ii) Varying concentrations of ICS of different manufacturers may have affected the radiographic evaluation of irrigant penetration up to the WL. iii) Other factors like teeth sampled, depth of penetration, size of the needle, concentration, volume and flowrate of irrigants used, variations in the apical size and canal taper could also introduce bias. In the majority of these studies, the outcome evaluators were blinded. Hence, assessment bias was minimized and did not influence the results.

Effective IATs with increased irrigant penetration promote greater cleaning and canal debridement (48). The systematic review conducted by Susila A and Minu J (61) consists of a single *in vivo* study (15) which does not provide concrete evidence of irrigant delivery up to the WL using IATs (PUI and ANP). The effectiveness of irrigation is assured only when the irrigant is activated upon contact with the whole root canal

Study	Effect Size [95% CI] We (%) ('	eight %)
Straight canal - PUI		
Castelo-Baz et al., 2021	64.90 [60.20, 69.60] 5.	69
Souza et al., 2019	20.00 [13.80, 26.20] 5.	62
Kamra et al., 2016	33.30 [24.95, 41.65] 5.	50
Kanumuru et al., 2015	39.90 [33.51, 46.29] 5.	61
Sáinz-Pardo et al., 2014	50.00 [38.09, 61.91] 5.	24
Pawar et al., 2013	74.90 [70.64, 79.16] 5.	70
Spooty et al., 2013	12.50 [4.55, 20.45] 5.	52
Castelo-Baz et al., 2012	69.90 [65.42, 74.38] 5.	70
de Gregorio et al., 2010	64.90 [60.20, 69.60] 5.	69
Heterogeneity: τ^2 = 504.94, I ² = 98.33%, H ² = 59.89	47.96 [33.10, 62.82]	
Test of $\theta_i = \theta_j$: Q(8) = 438.04, p = 0.00		
Curved canal - BIII		
Castelo-Baz et al. 2021	34 90 [30 20 39 60] 5	69
Castelo-Baz et al., 2021	39 90 [35 07 44 73] 5	68
Merino et al. 2013		21
Vera et al. 2011		62
Heterogeneity: $\tau^2 = 235 \ 16 \ I^2 = 96 \ 12\% \ H^2 = 25 \ 75$	41.78[26.30, 57.27]	02
Test of $\theta_{1} = \theta_{1}$: Q(3) = 31.71, p = 0.00		
Straight canal - SI		
Kanumuru et al., 2015	39.90 [33.51, 46.29] 5.	61
Sáinz-Pardo et al., 2014	20.00 [7.62, 32.38] 5.	20
Pawar et al., 2013	49.90 [44.98, 54.82] 5.	68
de Gregorio et al., 2010	39.90 [35.07, 44.73] 5.	68
Heterogeneity: τ^2 = 116.83, I ² = 92.19%, H ² = 12.80	38.40 [27.17, 49.62]	
Test of $\theta_i = \theta_j$: Q(3) = 23.13, p = 0.00		
Curved canal - SI		
Merino et al. 2013		36
Heterogeneity: $\tau^2 = 0.00 \ l^2 = \% \ H^2 =$		00
Test of $\theta = \theta$: $O(0) = 0.00$, $p =$		
100(0,0) = 0, $a(0) = 0.00$, $p = 1$		
Overall	42.91 [34.05, 51.78]	
Heterogeneity: τ^2 = 353.85, I ² = 97.51%, H ² = 40.15		
Test of $\theta_i = \theta_j$: Q(17) = 669.35, p = 0.00		
Test of aroup differences: $Q_{b}(3) = 12.10$, $p = 0.01$		
-4(0 -20 0 20 40 60 80	
Random-effects REML model Control Favoured (Cl	NI) Comparator Favoured (PUI 8	SI)

Figure 5. Forest plot evaluating the percentage difference (% diff) of irrigant penetration following the use of PUI v CNI and SI v CNI in the straight and curved canals of mature permanent teeth

CI: Confidence interval, CNI: Conventional needle irrigation technique, PUI: Passive ultrasonic irrigation, SI: Sonic irrigation

system (9). The mere presence of NaOCI in the apical third does not ensure thorough cleanliness and disinfection (62), as NaOCI requires adequate time, concentration, and contact to break down organic substances and affect the microbes protected by biofilm for the success of endodontic therapy. Even though the authors accept the limitations of the data, the consistency within the results and the existing literature support the hypothesis that IATs have better penetration depth up to the WL in straight and curved canals when compared to CNI. For all the above reasons, the null hypothesis is rejected.

Strength and Limitations

The key strengths of this systematic review and meta-analysis were: i) following a rigorous protocol, ii) testing a prior hypothesis. iii) low risk of bias across the included studies. The overall risk of bias was found to be 81.4% which symbolizes the true treatment effect.

The limitations of our review pertain to the following: i) High heterogeneity found across the studies, hence the conclusion of the meta-analysis as a reliable interpretation should be viewed with caution. ii) Lack of standardization prevents the comparison among the various IATs. iii) The findings in 16 of 20 studies are based on laboratory experiments. iv) Alterations in the physical characteristics of NaOCl due to the addition of radiopaque substances. v) The lack of quantitative volumetric data and the spreading pattern of ICS within the canal when compared to the existing data of NaOCl. vi)

Anatomical barriers, variations in the procedures, and concentrations of radiopaque substances employed in the studies may also influence the visual radiographic assessment of irrigant penetration depth.

Future Research

An ideal protocol for assessing irrigant penetration does not exist, hence future research should address the following:

- 1. Maintaining a standardized protocol for using IATs with a robust experimental model.
- 2. Use of randomized controlled design.
- 3. Standardization of the concentration of radiopaque substance used with NaOCI to obtain accurate visual images of irrigant penetration.
- 4. *In vivo* procedures should include fluid irrigation dynamics assessment when using radiopaque substances with similar physical characteristics as that of NaOCI.
- 5. Apical extrusion of different IATs needs to be evaluated *in vivo*.
- 6. Evaluation of *in vivo* effect of PUI and ANP on disinfection and debridement.
- Investigation of the synergistic impact of ANP and PUI irrigation on more complex root structures.

CONCLUSION

This review helps the clinician establish the importance of employing IATs to disinfect the main canal up to the WL and gain greater success with the outcomes of endodontic therapy. Within the limitations of the studies reviewed in this paper, the authors conclude that IATs improve irrigant penetration when compared to CNI and therefore their use during root canal therapy is recommended. In both straight and curved canals, ANP is the most effective IAT in delivering the irrigant up to the WL followed by PUI, SI and MDA techniques. Hence adaptation of recent IATs in routine endodontic practice is recommended.

Disclosures

Acknowledgement: The authors would like to thank Sunita Shivanand, Lokesh Kumar S, Benin Paulian, Sridhar M, Anu Sara Varghese, Vasanti Lagali-Jirge and Varkey N S for their significant contribution to the quality of the manuscript. The authors are also indebted to Jang Bahadur Prasad for his expert opinion in computing meta-analysis.

Conflict of interest: The authors deny any conflict of interest.

Ethics Committee Approval: Not applicable.

Peer-review: Externally peer-reviewed.

Financial Disclosure: This study did not receive any financial support.

Authorship contributions: Concept – R.S.K., A.A., M.P.; Design – R.S.K., R.S.; Supervision – A.A., R.S., M.P.; Data collection and/or processing – R.S.K., M.P., A.P.K.; Analysis and/or interpretation – R.S.K.; Literature search – R.S.K., M.A.S., M.P.; Writing – R.S.K., V.H.; Critical Review – A.A., R.S., M.P., A.P.K., M.A.S.

REFERENCES

- 1. Sjögren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 1997; 30(5):297–306. [CrossRef]
- Siqueira JF Jr, Lima KC, Magalhães FA, Lopes HP, de Uzeda M. Mechanical reduction of the bacterial population in the root canal by three instrumentation techniques. J Endod 1999; 25(5):332–5. [CrossRef]
- 3. Nguy D, Sedgley C. The influence of canal curvature on the mechanical efficacy of root canal irrigation *in vitro* using real-time imaging of bioluminescent bacteria. J Endod 2006; 32(11):1077–80. [CrossRef]
- Rödig T, Döllmann S, Konietschke F, Drebenstedt S, Hülsmann M. Effectiveness of different irrigant agitation techniques on debris and smear layer removal in curved root canals: a scanning electron microscopy study. J Endod 2010; 36(12):1983–7. [CrossRef]
- 5. Druttman AC, Stock CJ. An *in vitro* comparison of ultrasonic and conventional methods of irrigant replacement. Int Endod J 1989; 22(4):174–8.
- 6. Zehnder M. Root canal irrigants. J Endod 2006; 32(5):389–98. [CrossRef]
- 7. Baumgartner JC, Mader CL. A scanning electron microscopic evaluation of four root canal irrigation regimens. J Endod 1987; 13(4):147–57.
- Calt S, Serper A. Time-dependent effects of EDTA on dentin structures. J Endod 2002; 28(1):17–9. [CrossRef]
- 9. Gu LS, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR. Review of contemporary irrigant agitation techniques and devices. J Endod 2009; 35(6):791–804.
- Ribeiro EM, Silva-Sousa YT, Souza-Gabriel AE, Sousa-Neto MD, Lorencetti KT, Silva SR. Debris and smear removal in flattened root canals after use of different irrigant agitation protocols. Microsc Res Tech 2012; 75(6):781–90.
- 11. Boutsioukis C, Lambrianidis T, Verhaagen B, Versluis M, Kastrinakis E, Wesselink PR, et al. The effect of needle-insertion depth on the irrigant flow in the root canal: evaluation using an unsteady computational fluid dynamics model. J Endod 2010; 36(10):1664–8. [CrossRef]
- 12. Kanumuru PK, Sooraparaju SG, Konda KR, Nujella SK, Reddy BK, Penigalapati SR. Comparison of penetration of irrigant activated by traditional methods with a novel technique. J Clin Diagn Res 2015; 9(11):ZC44–7.
- Helmy RH, Mokhless NA, El Backly RM. *In vitro* comparative efficacy of two techniques for irrigant delivery in curved root canals. Alex Dent J 2016; 41(3):314–7. [CrossRef]
- Huffaker SK, Safavi K, Spangberg LS, Kaufman B. Influence of a passive sonic irrigation system on the elimination of bacteria from root canal systems: a clinical study. J Endod 2010; 36(8):1315–8. [CrossRef]
- Munoz HR, Camacho-Cuadra K. *In vivo* efficacy of three different endodontic irrigation systems for irrigant delivery to working length of mesial canals of mandibular molars. J Endod 2012; 38(4):445–8. [CrossRef]
- Nielsen BA, Craig Baumgartner J. Comparison of the EndoVac system to needle irrigation of root canals. J Endod 2007; 33(5):611–5. [CrossRef]
- 17. de Gregorio C, Estevez R, Cisneros R, Paranjpe A, Cohenca N. Efficacy of different irrigation and activation systems on the penetration of sodium hypochlorite into simulated lateral canals and up to working length: an *in vitro* study. J Endod 2010; 36(7):1216–21. [CrossRef]
- Spoorthy E, Velmurugan N, Ballal S, Nandini S. Comparison of irrigant penetration up to working length and into simulated lateral canals using various irrigating techniques. Int Endod J 2013; 46(9):815–22. [CrossRef]

- Baker NA, Eleazer PD, Averbach RE, Seltzer S. Scanning electron microscopic study of the efficacy of various irrigating solutions. J Endod 1975; 1(4):127–35. [CrossRef]
- Jaju S, Jaju PP. Newer root canal irrigants in horizon: a review. Int J Dent 2011; 2011:851359. [CrossRef]
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 2021; 88:105906. [CrossRef]
- Căpută PE, Retsas A, Kuijk L, Chávez de Paz LE, Boutsioukis C. Ultrasonic irrigant activation during root canal treatment: a systematic review. J Endod 2019; 45(1):31–44. [CrossRef]
- 23. Abrar S, Jaiprakash R, Mahala H, Naviwala GA, Ramugade M, Sapkale K. Comparative evaluation of efficacy of endodontic irrigant delivery to working length using conventional needle syringe, endovac and self-adjusting file system on prepared mesiobuccal canal of mandibular first molar by using radiographic contrast media: an *in vivo* study. Int J Dentistry Oral Sci 2019; 6(6):706–10. [CrossRef]
- 24. Kamra AI, Tank JM, Banga KS. Effect of maintaining apical patency and passive ultrasonic irrigation on irrigant penetration into the apical third of root canals: An *in vivo* study. Endodontology 2016; 28(2):127–31.
- Vera J, Arias A, Romero M. Effect of maintaining apical patency on irrigant penetration into the apical third of root canals when using passive ultrasonic irrigation: an *in vivo* study. J Endod 2011; 37(9):1276–8. [CrossRef]
- Dhaimy S, Imdary S, Dhoum S, Benkiran I, El Ouazzani A. radiological evaluation of penetration of the irrigant according to three endodontic irrigation techniques. Int J Dent 2016; 2016;3142742. [CrossRef]
- Sáinz-Pardo M, Estevez R, Pablo ÓV, Rossi-Fedele G, Cisneros R. Root canal penetration of a sodium hypochlorite mixture using sonic or ultrasonic activation. Braz Dent J 2014; 25(6):489–93. [CrossRef]
- Bronnec F, Bouillaguet S, Machtou P. *Ex vivo* assessment of irrigant penetration and renewal during the final irrigation regimen. Int Endod J 2010; 43(8):663–72. [CrossRef]
- Castelo-Baz P, Lozano FJR, Ginzo-Villamayor MJ, Vila RM, Seoane-Romero J, Martín-Cruces J, et al. Efficacy of continuous apical negative ultrasonic irrigation (CANUI) in penetration of simulated lateral canals in extracted teeth. Sci Rep 2021; 11(1):10908. [CrossRef]
- Souza CC, Bueno CE, Kato AS, Limoeiro AG, Fontana CE, Pelegrine RA. Efficacy of passive ultrasonic irrigation, continuous ultrasonic irrigation versus irrigation with reciprocating activation device in penetration into main and simulated lateral canals. J Conserv Dent 2019; 22(2):155–9.
- Khare M, Suprabha BS, Yadav A, Shenoy R, Boaz K, Rao A. Effectiveness of ultrasonic and manual dynamic agitation techniques in irrigant penetration: an *in vitro* study. World J Dent 2017; 8(3):207–12. [CrossRef]
- Castelo-Baz P, Varela-Patiño P, Cantatore G, Domínguez-Perez A, Ruíz-Piñón M, Miguéns-Vila R, et al. *In vitro* comparison of passive and continuous ultrasonic irrigation in curved root canals. J Clin Exp Dent 2016; 8(4):e437–41. [CrossRef]
- Pawar A, Kokate S, Pawar M, Hegde V. Efficacy of different irrigation activation systems on the penetration of sodium hypochlorite. an *in-vitro* simulated canal study. Indian J Dent Sci 2013; 5(3):32–35.
- Castelo-Baz P, Martín-Biedma B, Cantatore G, Ruíz-Piñón M, Bahillo J, Rivas-Mundiña B, et al. *In vitro* comparison of passive and continuous ultrasonic irrigation in simulated lateral canals of extracted teeth. J Endod 2012; 38(5):688–91. [CrossRef]
- 35. de Gregorio C, Paranjpe A, Garcia A, Navarrete N, Estevez R, Esplugues EO, et al. Efficacy of irrigation systems on penetration of sodium hypochlorite to working length and to simulated uninstrumented areas in oval shaped root canals. Int Endod J 2012; 45(5):475–81. [CrossRef]
- Merino A, Estevez R, de Gregorio C, Cohenca N. The effect of different taper preparations on the ability of sonic and passive ultrasonic irrigation to reach the working length in curved canals. Int Endod J 2013; 46(5):427–33. [CrossRef]
- 37. S DPA, Solete P, Jeevanandan G, Syed AA, Almahdi S, Alzhrani M, et al. Effect of various irrigant activation methods and its penetration in the apical third of root canal-*in vitro* study. Eur J Dent 2022 Feb 21. doi: 10.1055/s-0041-1742122. [Epub ahead of print]. [CrossRef]
- Robertson DC, Leeb IJ. The evaluation of a transparent tooth model system for the evaluation of endodontically filled teeth. J Endod 1982; 8(7):317–21.
- de Gregorio C, Estevez R, Cisneros R, Heilborn C, Cohenca N. Effect of EDTA, sonic, and ultrasonic activation on the penetration of sodium hypochlorite into simulated lateral canals: an *in vitro* study. J Endod 2009;

35(6):891-5. [CrossRef]

- Tay FR, Gu LS, Schoeffel GJ, Wimmer C, Susin L, Zhang K, et al. Effect of vapor lock on root canal debridement by using a side-vented needle for positive-pressure irrigant delivery. J Endod 2010; 36(4):745–50. [CrossRef]
- Machtou PP. Manual dynamic activation technique. Clin Dent Rev 2018; 2:21. [CrossRef]
- Topçuoğlu HS, Topçuoğlu G, Arslan H. The effect of different irrigation agitation techniques on postoperative pain in mandibular molar teeth with symptomatic irreversible pulpitis: a randomized clinical trial. J Endod 2018; 44(10):1451–6. [CrossRef]
- 43. Cohenca N, Heilborn C, Johnson JD, Flores DS, Ito IY, da Silva LA. Apical negative pressure irrigation versus conventional irrigation plus triantibiotic intracanal dressing on root canal disinfection in dog teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109(1):e42–6. [CrossRef]
- 44. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 2004; 30(8):559–67. [CrossRef]
- Ahmad M, Pitt Ford TR, Crum LA. Ultrasonic debridement of root canals: an insight into the mechanisms involved. J Endod 1987; 13(3):93–101.
- 46. Lea SC, Felver B, Landini G, Walmsley AD. Ultrasonic scaler oscillations and tooth-surface defects. J Dent Res 2009; 88(3):229–34. [CrossRef]
- Adcock W, Trout NA, Vercoe D, Taylor DK, Shiner VJ Jr, Sorensen TS. Solvolysis of (Z)-5-trimethylstannyl 2-adamantyl p-bromobenzenesulfonate: mechanistic implications of a record-breaking secondary alpha-deuterium kinetic isotope effect for an SN1 substrate. J Org Chem 2003; 68(13):5399–402. [CrossRef]
- Mitchell RP, Yang SE, Baumgartner JC. Comparison of apical extrusion of NaOCI using the EndoVac or needle irrigation of root canals. J Endod 2010; 36(2):338–41. [CrossRef]
- Boutsioukis C, Gogos C, Verhaagen B, Versluis M, Kastrinakis E, Van der Sluis LW. The effect of apical preparation size on irrigant flow in root canals evaluated using an unsteady Computational Fluid Dynamics model. Int Endod J 2010; 43(10):874–81. [CrossRef]
- Brunson M, Heilborn C, Johnson DJ, Cohenca N. Effect of apical preparation size and preparation taper on irrigant volume delivered by using negative pressure irrigation system. J Endod 2010; 36(4):721–4. [CrossRef]
- Salzgeber RM, Brilliant JD. An *in vivo* evaluation of the penetration of an irrigating solution in root canals. J Endod 1977; 3(10):394–8. [CrossRef]
- Chow TW. Mechanical effectiveness of root canal irrigation. J Endod 1983; 9(11):475–9. [CrossRef]
- 53. Guerreiro-Tanomaru JM, Loiola LE, Morgental RD, Leonardo Rde T, Tanomaru-Filho M. Efficacy of four irrigation needles in cleaning the apical third of root canals. Braz Dent J 2013; 24(1):21–4. [CrossRef]
- 54. Park E, Shen Y, Khakpour M, Haapasalo M. Apical pressure and extent of irrigant flow beyond the needle tip during positive-pressure irrigation in an *in vitro* root canal model. J Endod 2013; 39(4):511–5. [CrossRef]
- 55. Al-Jadaa A, Paqué F, Attin T, Zehnder M. Acoustic hypochlorite activation in simulated curved canals. J Endod 2009; 35(10):1408–11. [CrossRef]
- Jiang LM, Verhaagen B, Versluis M, Langedijk J, Wesselink P, van der Sluis LW. The influence of the ultrasonic intensity on the cleaning efficacy of passive ultrasonic irrigation. J Endod 2011; 37(5):688–92. [CrossRef]
- Nagendrababu V, Jayaraman J, Suresh A, Kalyanasundaram S, Neelakantan P. Effectiveness of ultrasonically activated irrigation on root canal disinfection: a systematic review of *in vitro* studies. Clin Oral Investig 2018; 22(2):655–70. [CrossRef]
- Retsas A, Dijkstra RJB, van der Sluis L, Boutsioukis C. The effect of the ultrasonic irrigant activation protocol on the removal of a dual-species biofilm from artificial lateral canals. J Endod 2022; 48(6):775–80. [CrossRef]
- Perez R, Neves AA, Belladonna FG, Silva EJNL, Souza EM, Fidel S, et al. Impact of needle insertion depth on the removal of hard-tissue debris. Int Endod J 2017; 50(6):560–8. [CrossRef]
- Sedgley CM, Nagel AC, Hall D, Applegate B. Influence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging *in vitro*. Int Endod J 2005; 38(2):97–104. [CrossRef]
- Susila A, Minu J. Activated irrigation vs. conventional non-activated irrigation in endodontics - a systematic review. Eur Endod J 2019; 4(3):96–110.
- Adcock JM, Sidow SJ, Looney SW, Liu Y, McNally K, Lindsey K, et al. Histologic evaluation of canal and isthmus debridement efficacies of two different irrigant delivery techniques in a closed system. J Endod 2011; 37(4):544–8. [CrossRef]

APPENDIX 1. Quality requirements during risk of bias assessment of included studies

Study design, specimen selection, & randomization

- 1. Prior sample size estimation
- 2. Type of teeth
- 3. Working length/ Standardized root length
- 4. Canal Curvature (straight/ curved)
- 5. Inclusion & Exclusion criteria
- 6. Random allocation to different groups
- 7. Method used to simulate periapical tissues
- 8. Verification of the presence of single canal for anterior teeth or separate canals for posterior teeth

Instrumentation

- 1. Patency
- 2. Apical root canal size and taper
- 3. Identical standardized instrumentation in all groups

Irrigation and IATs used

- 1. Concentration of NaOCl used
- 2. Type, concentration, manufacturer of contrast solution
- 3. Needle: Manufacturer, type and size (CNI group)
- 4. Needle insertion depth from the WL (CNI group)
- 5. Volume and duration/flow rate of irrigant delivered (CNI group)
- 6. Device model and manufacturer (Test group/groups)
- 7. File/GP cone: type, size, length (Test group/groups)
- 8. File/GP cone: insertion depth from the WL (Test group/groups)
- 9. Power setting (Test group/groups)
- 10. Duration of activation (Test group/groups)
- 11. Volume of irrigant delivered (Test group/groups)
- 12. No. of cycles (Test group/groups)
- 13. Irrigation protocols identical in the compared groups except for activation cycles

Outcome assessment

- 1. Blinded/observer-independent assessment of the results
- 2. Reliability of outcome measured
- 3. Data summary (descriptive statistics) or complete raw data
- 4. Suitable statistical tests

APPENDIX 2. List of excluded articles with reason after full-text evaluation

Study	Reason for exclusion
Maiti et al., 2021	Duplication of study results of Castelo-Baz et al., 2021
Nangia et al., 2020	Open canal system
Pacheco-Yanes et al., 2020	Different outcome evaluated
Wahjuningrum et al., 2020	Outcome measures were not mentioned clearly
Galler et al., 2019	Penetration depth of irrigants into root dentine
Landolo et al., 2019	Penetration depth of irrigants into root dentine
Lorono et al., 2019	Different outcome evaluated
Andrade et al., 2016	Resin block
Adorno et al., 2015	Artificial Tooth model
Tanomaru-Filho et al., 2015a	Resin tooth
Tanomaru-Filho et al., 2015b	Transparent artificial tooth
Chávez-Andrade et al., 2014	Different outcome evaluated
Kungwani et al., 2014	Debris removal from root canal
Chen et al., 2013	Different outcome evaluated
de Gregorio et al., 2013	Different outcome evaluated
Peeters et al., 2013	Saline as an irrigating solution
Guerreiro-Tanomaru et al., 2013	Distilled water as an irrigating solution
Vera et al., 2012a	Different outcome evaluated
Vera et al., 2012b	Different outcome evaluated
Bronnec et al., 2010	Alternative IATs assessed
Brunson et al., 2010	Different outcome evaluated
Nielsen et al., 2007	Assessing efficacy of canal debridement
Khademi et al., 2006	Different outcome evaluated