Comparison of T2W FLAIR Images of Patients with Multiple Sclerosis and Ischemic Gliosis via Histogram Analysis

Murat Baykara, Mustafa Yıldırım, İsmail Taşkent, Hanefi Yıldırım, Duran Tavut

Objective: In some cases, it may be challenging to differentiate radiologically between ischemic gliotic foci and multiple sclerosis (MS) plaques. This study aims to evaluate the effectiveness of histogram analysis in the differentiation of MS plaque and ischemic gliosis lesions on the T2-weighted (T2WI) FLAIR sequence.

Materials and Methods: This study was conducted on the Magnetic Resonance Imaging (MRI) examinations of patients diagnosed with ischemic gliosis and multiple sclerosis. Inactive lesions of 43 patients with ischemic gliosis and 46 with multiple sclerosis imaged by the same device were included in the study. Histogram analysis parameters of both groups were calculated. The entire image analysis algorithm was obtained through in-house software coded in MATLAB. Both groups were compared using a student’s t-test. The diagnostic value of the parameters was detected with the receiver operating characteristic (ROC) curve.

Results: Mean gray level intensity, the standard deviation of the histogram, and entropy values calculated via minimum, maximum, and median values were significantly higher in patients with ischemic gliosis. ROC curve analysis indicated that a threshold value of 545.19 for mean gray level intensity has 69.8% specificity and 69.6% sensitivity.

Conclusion: Histogram analysis may help differentiate MS and ischemic gliosis.

Keywords: Multiple Sclerosis; gliosis, image processing, histogram analysis, MRI

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, chronic, and degenerative neurological disease that causes physical and psychiatric problems such as weakness, loss of vision, bowel dysfunction, fatigue, mood symptoms, cognitive problems, depression, and anxiety (1). It is usually characterized by recurrent immune-mediated demyelination, glial scar formation, and axonal loss (1, 2).

Magnetic resonance imaging (MRI) is very successful in detecting intracranial and spinal abnormalities in patients with multiple sclerosis, including white matter damage observed through fluid-attenuated inversion recovery (FLAIR) sequence (3). Commonly, characteristic lesion morphology, distribution of lesions, and involvement of specific anatomical structures support the diagnosis of MS. However, it is essential to consider that several other disorders appear similarly in MRI with MS, especially in T2WI/FLAIR images (3).

In this respect, differentiating MS from acquired small vessel disease (SVD) on MRI images becomes a significant challenge due to the high prevalence of hypoxic/ischemic SVD leukoencephalopathy, commonly in middle-aged or elderly patients (3). SVD is a pathological process that affects perforating capillaries, cerebral arterioles, and venules (4). MS plaques are observed as multiple focal hyperintense lesions on the FLAIR sequence on MRI (3). Hypoxic/ischemic neurological damage is commonly caused by diseases that affect large or small blood vessels. The appearance of SVD in MRI is rarely interpreted as suggesting MS (3).

Digital images are used in radiologic practice. Small rectangular blocks or pixels (image elements) compose a two-dimensional digital image. Each pixel is represented through a set of coordinates in space and has a value to represent the gray-level intensity of a visual or volume in space. A texture of a digital image can be linked to the image’s gray-level distribution. Texture characteristics are mathematical parameters calculated based on the pixel distribution characterizing the texture type, hence the basic structure of matters presented in the image (5).

Lesion heterogeneity may be helpful in the differential diagnosis of visually similar lesions. Texture analysis is used to assess lesion heterogeneity. Different texture parameters are used for this purpose. Entropy is one of the texture parameters recognized to measure homogeneity within the region of interest (ROI) (6, 7). It is the measure of changes in gray level and indicates inhomogeneity. It is defined as zero once all data are identical, and its value increases based on the irregularities in distribution (7, 8).
Uniformity refers to the closeness to the normal distribution of the gray level intensity of the image, and higher values indicate a more normal distribution (7, 8). Skewness suggests asymmetry in distribution, with more values to the left of the mean indicating a positive skewness and the opposite indicating a negative skewness (8).

Kurtosis is the measure of the peak in distribution. Once the histogram has a bell curve, its value becomes three, and the histogram curve with a sharper peak has a more significant value than three (8). Size %lower, size %upper, and size %mean (%L, %U, and %M) indicate the areas in the histogram (9). These techniques recently attracted particular attention (5, 10, 11) and were used in various diagnoses, such as tumor characterization (12), prognostic biomarkers identification (13–16), and radiotherapy guidance (17).

MR histogram studies have been performed in patients with multiple sclerosis (18), and several parameters were compared; however, no study compared the MR histogram findings of MS and SVD. Cerebral small vessel disease causes ischemic gliotic focus. Ischemic gliotic foci are hyperintense white matter lesions on the T2W FLAIR image. In some cases, it may be challenging to differentiate radiologically between ischemic gliotic foci and MS plaques. This study aims to differentiate between MS plaque and SVD through the histogram analysis of T2W FLAIR sequence images.

MATERIALS and METHODS

Fırat University Ethics Committee approved this study (date: 05/07/2018, number: 12/01). Because the study is retrospective, patients’ written informed permission could not be acquired. This retrospective study was conducted on the MRI examinations of patients diagnosed with ischemic gliosis and multiple sclerosis. Between 2020–2022 years, inactive lesions of 43 patients with ischemic gliosis and 46 with multiple sclerosis imaged by the same device were considered.

MS patients in Group 1 were diagnosed using the 2017 McDonald Criteria. Patients with MS were randomly selected from the hospital database. Only patients with the relapsing-remitting form of the disease were enrolled in the study. Other forms of MS were not included in the study.

Group 2 included patients with SVD. Patients with hyperintense areas on T2W FLAIR images consistent with SVD were included in the study (Fazekas grade=1–2) (19). Patients with SVD were randomly selected from the hospital database. Any cause of stroke other than SVD (such as a cardioembolic source or extra- or intracranial artery stenosis of >50%), any significant central nervous system illnesses (neurosarcoidosis, systemic lupus erythematosus, rheumatic arthritis, toxic, metabolic, infectious, metastatic diseases, dementia, and other vasculitis diseases), and significant psychiatric disorders were excluded.

The MRI examinations were conducted with a 1.5T Philips Ingenia device (Philips, Best, Netherlands). Images of axial FLAIR were transferred to an iMac PC (Apple Inc). The histogram analysis was performed with OsiriX V.4.9 image software (Pixmeo, Switzerland) utilizing the region of interest (ROI).

All lesions were selected from periventricular white matter. ROI was specified to cover 2/3 of the hyperintense lesion in sections (Fig. 1, 2). Histogram analysis parameters were calculated, and the entire image analysis algorithm was obtained through in-house software coded in MATLAB (version R2009b).

Statistical Analysis

The statistical analyses were conducted with IBM SPSS for Windows, version 22.0 (IBM Statistics, IBM Corporation, Armonk, New York, USA). The normality of the data distribution was analyzed with the Kolmogorov–Smirnov test. Student-t test was used for normally distributed data. Mann Whitney U test was used for non-normally distributed data. Statistical significance value was defined as a value of p<0.05. Mean±standard deviation was used in expressing the data. The post-power of the study was calculated with G*Power software (version 3.1.9.4). The discrimination performance of the parameters was determined using a ROC curve. The cut-off value was determined with the Youden index.
RESULTS

The mean age of the patients with ischemic gliosis was higher (patients with ischemic gliosis and multiple sclerosis were 68.70±10.94 and 40.25±11.72 years, respectively; p<0.001). The post-hoc power was calculated as 85%. All parameters' median, minimum, and maximum values were determined (Table 1). Mean gray level intensity, a standard deviation of a histogram, and minimum, maximum, median, and entropy values were significantly higher in patients with ischemic gliosis (Table 2). A ROC curve was carried out for mean gray level intensity, and the area under the curve (AUC) was determined as 0.715. This AUC value was interpreted as fair (20). When the threshold value was 545.19, 69.8% specificity and 69.6% sensitivity were found in differentiating ischemic focus and MS plaque (Fig. 3). Using ROC analysis, the AUC value for entropy was 0.655. When the cut-off value was selected as 5.506 for entropy, ischemic focus, and MS plaque could be differentiated with a sensitivity of 73.9% and specificity of 62.8%.

DISCUSSION

MRI is a powerful instrument for MS diagnosis based on T2-weighted white matter lesions and for monitoring treatment response and disease activity in clinical practice (1). Typical MS le-
Although the underlying causes of MS and SVD are not established, it is possible to state that the blood-brain barrier is disrupted in both diseases as a standard feature (26). The blood-brain barrier disruption is linked to entropy values (27). In our study, entropy was another statistically significant analysis parameter; entropy values of inactive MS lesions were lower compared to the secondarily developed gliotic foci in SVD. Hence, this parameter may be helpful in the differentiation of ischemic foci and MS plaques. Michoux et al. (27) detected a significant increase in entropy values in patients with lacunar infarction compared to cortical ischemia. Similarly, the present study indicated higher entropy values for small vessel disease.

Loizou et al. (18) found that parameters such as standard deviation, entropy, and variance significantly increased during MS episodes but decreased after 6–12 months. Similar studies (28) indicated higher entropy values in active MS lesions than those with inactive lesions. Such a finding was considered due to further disrupting the blood-brain in active MS lesions. In the present study, histogram analysis was carried out with inactive MS lesions. These findings can explain the lower entropy values in MS lesions compared to SVD in our study.

Although there are many histogram analysis studies on MS, a histogram analysis study on the distinction between MS and SVD could not be found in the literature. Tozer et al. (29) reported that central veins in white matter lesions could differentiate primary progressive MS from SVD (29). The present study used histogram analysis to differentiate relapsing-remitting MS from SVD. Central vein sign is a visual data. But histogram analysis provides numeric data.

Limitations

The study was conducted in a single center, and the number of cases was low. A single slice was used for histogram analysis. Histogram analysis with 3D imaging would more accurately reflect the entire lesion. The age and volume differences of the lesions may affect the histogram analysis results. In addition, the higher mean age of the ischemia group is another study limitation.

It is possible to consider obtaining histogram analyses in other studies from T1A images as a limitation. However, similar results were obtained from T1A and FLAIR sequences in SVD patients in a study conducted by Tozer et al. (29).

CONCLUSION

As a result, histogram analysis may help differentiate MS plaque and ischemic gliotic foci.

Ethics Committee Approval: The Fırat University Clinical Research Ethics Committee granted approval for this study (date: 05.07.2018, number: 12/01).

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – MB, MY, İT; Design – MY, MB, HY; Supervision – HY, DT, MY; Resource – MB, IT, MY; Materials – MB, DT, HY; Data Collection and/or Processing – MB, DT; Analysis and/or Interpretation – MB, IT, MY; Literature Search – MB, MY; Writing – MB, MY, IT; Critical Reviews – MB.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.
REFERENCES

