Venous Air Embolism During Hysteroscopic Myomectomy: A Case Report and Evidence Based-Management

Histereskopik Miyomektomi Sırasında Hava Embolisi: Olgu Sunumu ve Kanıta Dayalı Yönetim

Sami Kaan Cosarcan¹, Alper Tunga Dogan¹, Omur Ercelen²

¹VKV American Hospital, Department of Anesthesiology, Istanbul, Turkey
²VKV American Hospital, Department of Anesthesiology and Pain, Istanbul, Turkey

ABSTRACT

Operative hysteroscopic procedures can be performed safely in the outside the operating room. During hysteroscopic surgery, there is a potential risk for air or gas to enter the circulation from exposed uterine veins. Therefore, pulmonary gas embolism is a complication during operative hysteroscopy that can have significant consequences. In this case report, we wanted to talk about air/gas embolism that developed during hysteroscopy.

A 21-year-old, 160 cm, 61 kg patient underwent hysteroscopic myomectomy. At the 70th minute of surgery, ETCO$_2$ suddenly dropped from 35 mmHg to 15 mmHg, and SpO$_2$ regressed to 93%. Transesophageal echocardiography revealed enlargement of the right atrium and severe stretching of the right atrial septum. The patient, whose hemodynamics improved after fluid resuscitation and cardiac supportive treatment, was extubated at the end of the operation. Avoiding excessive Trendelenburg position, selection of irrigation fluid and pressure control, surgical technique and surgical time, selection of cauterization, awareness of the anesthesia team, and rapid response time play critical roles in the management of venous air or gas embolism.

Keywords: Gynecologic anesthesia, air embolism, transesophageal echocardiography

INTRODUCTION

Hysteroscopy is considered the gold standard diagnostic tool for the evaluation and treatment of uterine intracavitary pathology (1). The increased popularity in minimally invasive gynecology and hysteroscopy turned into a new philosophy called 'see and treat'. Operative hysteroscopic procedures can be performed safely in the office with low complication rates, high-cost effectiveness, and improved patient satisfaction (2).

All complications associated with hysteroscopic surgery are related to access (traumatic or cervical tears), distention media (excessive absorption of liquid or gas), thermal and/or mechanical injuries, or a combination of all of them. During hysteroscopic surgery, there is a potential risk for air or gas to enter the circulation through exposed uterine veins. Large open venous sinuses allow entry of air or gas into the right side of the heart and pulmonary system, especially when there is a favorable pressure gradient created by the Trendelenburg position of the patient and/or the intruterine distension due to the fluid. Therefore, pulmonary gas embolism is a known complication during operative hysteroscopy that may have significant consequences (3,4). The gas entering

Received/Geliş tarihi : 14.03.2022
Accepted/Kabul tarihi : 06.04.2022
Publication date : 28.04.2022

*Corresponding author: Sami Kaan Cosarcan • skcosarcan@gmail.com
Sami Kaan Cosarcan 0000-0003-1506-6435 / Alper Tunga Dogan 0000-0001-5058-7039
Omur Ercelen 0000-0002-5508-1077

Cite as: Cosarcan SK, Dogan AT, Ercelen O. Venous air embolism during hysteroscopic myomectomy: A case report and evidence based-management. JARSS 2022;30(2):139-142.
the circulation may be room air (nitrogen or oxygen) through an open cervix, gas bubbles from the products of electrosurgical vaporization, consisting mainly of hydrogen, carbon monoxide, and carbon dioxide, or during insertion and removal instruments, including the hysteroscope (4).

A sudden drop in end-tidal carbon dioxide (ETCO$_2$) pressure followed closely by a fall in peripheral oxygen saturation (SpO$_2$) are the characteristic signs of gas embolism. Other accompanying symptoms may vary depending on the volume and/or rate of absorption of the gas emboli. These may include decreased blood pressure, tachyarrhythmias, electrocardiographic changes suggestive of right heart failure or ischemia, and increased airway pressure (5). George A Vilos et al. reported air embolism in 5 in 5707 hysteroscopies, and Van Dijck et al. reported air embolism in 7 patients in 34 hysteroscopies. The authors mentioned the treatment algorithm with 100% O$_2$ support and fluid resuscitation in all cases (4,6).

In this case report, we would like to discuss an air or gas embolism during hysteroscopy and describe our evidence based management an air or gas embolism during hysteroscopy.

CASE PRESENTATION

A 21-year-old, (height:160 cm, weight:61 kg) American Society of Anesthesiologist (ASA) I patient underwent hysteroscopic myomectomy under general anesthesia. After routine anesthesia monitoring was performed, anesthesia was induced with intravenous (IV) propofol 3 mg kg$^{-1}$, and fentanyl 1 µg kg$^{-1}$ and endotracheal intubation was fascilitated with IV rocuronium 0.6 mg kg$^{-1}$ using video-laryngoscope. Anesthesia maintenance was provided with desflurane 1 Minimum Alveolar Concentration (MAC) in 50% oxygen/air. Intraoperative analgesia was maintained remifentanil infusion of 0.05 – 0.1 µg kg$^{-1}$ min$^{-1}$. The patient was placed in the lithotomy with a 20° trendelenburg position. After dilating the cervix, the surgeon continued the submucous myoma excision using a morcellator with normal saline hysteroscopy. Myoma excision was difficult due to a large myoma, so the operation time was longer than expected. At the 70th min of the operation, the ETCO$_2$ was between 30 and 35 mmHg and suddenly dropped to 15 mmHg. Since air embolism was suspected, patient’s position was corrected to supine and the surgical team was informed. Inspired oxygen concentration was increased to 100%. Invasive arterial monitoring was performed by inserting a catheter into the left radial artery. Blood pressure was measured as 70/50 mmHg. Arterial blood gas analysis showed metabolic acidosis. When blood pressure dropped to 60/40 mmHg, IV 10 mg of ephedrine HCL was administered. Rapid fluid resuscitation was started and transesophageal echocardiography (TEE) was performed. In TEE images, the right atrium was enlarged, the right atrial septum was severely stretched, the right ventricle was enlarged, and images consistent with air in the right system were very intense (Figures 1 and 2). The diagnosis of major air embolism was reported to the surgical team. No structural abnormality that could cause paradoxical embolism was observed in TEE images. There was no image compatible with air in the left system. Intraoperative electrocardiography (ECG) revealed right bundle branch block (RBBB) and ST-T changes. High-sensitive Troponin-T and Troponin I were analysed. Ephedrine (IV 10 mg) administration was repeated. After achieving 90/60 mmHg, ETCO$_2$ varied between 30–32 mmHg and SpO$_2$ was 99%. In the control TEE, the image compatible with the air in the right system completely disappeared. It was observed that the right atrium and ventricular wall tension decreased significantly. The patient, was extubated at the end of the operation uneventfully. After the operation,
T analysis and ECG were repeated, and the patient had no complaints. Electrocardiogram showed slightly decreased ST-T changes. The patient, was transferred to the gynecology ward for follow-up. Control high sensitive troponin and ECG were re-evaluated on postoperative day 1. There was no abnormality. The patient was discharged without any further adverse events.

DISCUSSION

The complication of air embolism during hysteroscopy operations was first reported in 1985 (7). The gas embolus in the pulmonary circulation causes ventilation/perfusion mismatch by increasing dead space, decreasing both ETCO$_2$ and SpO$_2$. Large amounts of gas can mechanically obstruct the pulmonary vasculature and increase resistance to outflow from the heart’s right ventricle. This puts strain on the right side of the heart and decreases left ventricular preload, cardiac output, and blood pressure. Increased pressure in the right heart may force embolus to the left heart via a patent foramen ovale and cause paradoxical arterial embolization and cerebral and cardiac complications (8,9).

Dyrybe et al in their randomized controlled trial of 50 patients undergoing hysteroscopic surgery, observed air or gas embolism by TEE in all but one patient (10). No gas embolism was observed at less than 240 mL liquid intravasation. Gas embolism was equally observed irrespective of the type of electrosurgery; however, more extensive embolism was observed when intravasation of distention fluid exceeded 1 L. High-grade air embolisms were observed in the bipolar diathermia group, likely resulting from higher intravasation in this group. A sudden decrease in ETCO$_2$ was observed in seven of the 13 patients, and a systolic blood pressure decrease exceeding 25% of baseline was noticed in 33% of the study patients. In patients with high-grade gas emboli, more than 90% showed ST-T segment changes indicating right ventricular strain (10). Similarly to the results of previous study, we can attribute air embolism seen in our patient to the use of more than 1 L of distention fluid and bipolar diathermia.

Storm et al. presented three fatal cases with neurological sequelae with air embolism that indicates air embolism can cause severe consequences (11). In our case, early diagnosis and intervention of severe air embolism may have resulted in the patient’s uneventful discharge.

This high incidence of the presence of air necessitates awareness and prompt treatment in patients scheduled for hysteroscopy. Air embolism is possible in this type of surgery, and the entire operating room team should know about this complication and how to manage it.

CONCLUSION

Degree of Trendelenburg position, volume of irrigation fluid, duration of operation, type of diathermia, awareness of anesthesia team and fast response time play critical roles in preventing air or gas embolism.

AUTHOR CONTRIBUTIONS

Conception or design of the work: SKC
Data collection: SKC
Data analysis and interpretation: SKC, ATD
Drafting the article: SKC, ATD
Critical revision of the article: OE
Other (study supervision, fundings, materials, etc): OE

All authors (SKC, ATD, OE) reviewed the results and approved the final version of the manuscript.

REFERENCES

