Objective: On evaluating the guidelines from previous studies, we found no randomized controlled trials on the use of beta-blockers for heart failure (HF) that employed as evidence for heart rate targets of 60 or 70 beats/min. In this study, we aimed to assess the target heart rate in patients with HF treated with beta-blockers.

Methods: We used the keywords, “heart failure” and “beta-blocker” to search PubMed, Ovid, EMBASE, and Cochrane from 1966 to June 2021. Two authors independently reviewed the results of the search strategy and selected all the studies that reported the effect of beta-blockers on all-cause mortality in patients with HFrEF. We conducted analyses using Review Manager, version 5.0 and Stata version 12.0. Risk of bias was assessed regarding randomization, allocation sequence concealment, blinding, incomplete outcome data, and other biases. Sensitivity analysis was carried out to compare the results of fixed effect model with the results of random effect.

Results: No clinical trial supported the optimal heart rate of 60 beats/min. Risk ratio (RR) and 95% confidence interval (CI) were 0.77 (0.71, 0.83) and 0.86 (0.76, 0.97) in the subgroup with a baseline heart rate >80 beats/min and subgroup with baseline of ≤80 beats/min, respectively. RR and 95% CI were 0.92 (0.82, 1.02) and 0.77 (0.65, 0.92) in 2 subgroups with heart rate controlled ≥70 beats/min and 60–70 beats/min, respectively. Accumulated to MOCHA 1 trial (heart rate controlled 70 beats/min), there was no significant difference in mortality between the experimental group and the control group (RR=0.91, 95% CI 0.82–1.02). Accumulated to SENIORS trial (heart rate controlled 68.8 beats/min), there was a difference in mortality between the experimental and the control groups (RR=0.90, 95% CI 0.82–0.99).

Conclusion: The main effect of beta-blockers in the treatment of HF is achieved by lowering heart rate. The use of beta-blockers did not benefit in people with HFrEF whose heart rate was 77 beats/min before they started the treatment regimen. In patients with HFrEF, the purpose of beta-blockers is to control the heart rate to 65–70 beats/min.

Keywords: beta-blocker, heart rate, heart failure, death, ejection fraction, meta-analysis

Introduction

Beta-blockers are the cornerstone of treatment for heart failure with reduced ejection fraction (HFrEF) (1, 2). Current guidelines (3-5) recommend that patients with stable, symptomatic HF [New York Heart Association (NYHA) class II–IV] should start using beta blockade as early as possible and eventually continue to use it at the maximum tolerable dose. However, there are no specific targets for the use of beta blockers.

Heart rate is an independent risk factor for HF (6). An observational study involving 112,680 people showed that people in the general population with heart rate controlled at approximately 65
beats/min have the lowest total mortality rates and cardiovascular mortality rates (7). An observational study of 145,211 patients with HF reported a J-shaped relationship between hospital mortality and heart rate. They found that the mortality rate was the lowest among those with a heart rate of 70–75 beats/min (8). Both the American College of Cardiology/American Heart Association (3, 9) and European Society of Cardiology (5) guidelines recommend that patients with a heart rate higher than 70 beats/min after beta-blocker use should consider using ivabradine. This suggests that the heart rate should be controlled at about 70 beats/min with beta blockers. However, so far, no randomized controlled trials of beta blockers for HF were used as evidence for heart rate targets of 60 or 70 beats/min.

This systematic review of randomized controlled trials of beta-blockers in patients with HFrEF was conducted to assess the target heart rate of patients with HF treated with beta-blockers.

Methods

We searched PubMed, Ovid, EMBASE, and Cochrane from 1966 to June 2021. No language restrictions were applied, and only human studies, clinical trials, randomized and controlled trials’ publications were considered. “Heart failure” and “beta-blocker” were used as keywords. In addition, we searched recent meta-analyses or reviews of beta-blocker in heart failure and HF guidelines.

Selection and data abstraction

Two authors independently reviewed the results and selected studies that reported the effect of beta-blockers on all-cause mortality in patients with HFrEF. Studies were excluded if they did not report death at the end of the follow-up, used beta-blockers for one month or less, or enrolled less than 50 patients. Trials were excluded if there was no difference in the heart rate between the two groups at the end of the trial.

Two authors independently extracted all outcome data with subsequent discussion of any discrepancies. The outcomes from each study were extracted in intention-to-treat categories rather than per-protocol categories (that is, all outcomes were analyzed by randomization group to avoid bias from excluding patients who dropped out, were withdrawn, or did not adhere to treatment).

Statistical analysis

A meta-analyses and subgroup analysis were conducted using Review Manager, version 5.0 (The Cochrane Collaboration, Copenhagen, Denmark). We did cumulative analyses using Stata version 12.0. Owing to the relatively common outcome of interest, we calculated risk ratios (RRs) and 95% confidence interval (CI). We assessed and quantified statistical heterogeneity for each outcome of interest using the Cochran Q test and the I² statistic, respectively. The I² statistic quantifies the percentage of statistical heterogeneity due to between-study variability. By convention, values ≤25%, 25% to 50%, and ≥50% are considered to have low, moderate, and high amounts of heterogeneity, respectively. If the heterogeneity was high, the statistical method chose the random effect model.

Results

Study selection and evaluation

Among the 8 citations that we identified in our search, 106 were potentially eligible for inclusion. Consequently, 84 were excluded after a detailed review (Fig. 1).

Studies included in the systematic review

Table 1 shows the features from 22 (10–31) randomized trials. Three trials (13, 17, 28) reported outcome data in subgroups (each of these subgroups is reported as a separate row in Table 1). Therefore, a total of 27 trials or subgroups were included in the statistical analysis. The randomization scheme was used in all the experiments, and loss of follow-up and withdrawal were
Table 1. Characteristics of inclusion trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size, n beta-blocker vs. control</th>
<th>Mean age, year beta-blocker vs. control</th>
<th>Men, % beta-blocker vs. control</th>
<th>Objects of study</th>
<th>Average follow-up time</th>
<th>Beta-blocker therapy, final dose, mg/day</th>
<th>Baseline heart rate in treatment group, beats/min</th>
<th>Baseline heart rate in control group, beats/min</th>
<th>Baseline systolic pressure in treatment group, mm Hg</th>
<th>Baseline mean LVEF in treatment group</th>
<th>Heart rate in follow-up treatment group</th>
<th>Heart rate in follow-up control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, 1985 (10)</td>
<td>25 vs. 25</td>
<td>50±15 vs. 51±13</td>
<td>56 vs. 76</td>
<td>Diagnosis of idiopathic dilated cardiomyopathy made under an approved protocol, LVEF <0.40</td>
<td>19 months</td>
<td>Metoprolol, 61</td>
<td>85</td>
<td>85</td>
<td>—</td>
<td>0.29±0.1</td>
<td>75±12</td>
<td>84±21</td>
</tr>
<tr>
<td>MDC, 1993 (11)</td>
<td>194 vs. 189</td>
<td>49±12 vs. 49±12</td>
<td>75 vs. 70</td>
<td>Idiopathic dilated cardiomyopathy LVEF <0.40</td>
<td>12 months</td>
<td>Metoprolol, 108±50</td>
<td>91±18</td>
<td>90±17</td>
<td>118±17</td>
<td>0.22±0.08</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fisher, 1994 (12)</td>
<td>25 vs. 25</td>
<td>63±8 vs. 63±10</td>
<td>100 vs. 92</td>
<td>Chronic heart failure and coronary artery disease LVEF <0.40</td>
<td>6 months</td>
<td>Metoprolol, 87±25</td>
<td>82±12</td>
<td>86±12</td>
<td>117±25</td>
<td>0.22±0.08</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bristow I, 1994 (13) low-dose</td>
<td>38 vs. 34</td>
<td>55±2 vs. 52±2</td>
<td>68 vs. 59</td>
<td>Subjects were required to have heart failure symptoms of at least 1 month’s duration, LVEF <0.40</td>
<td>12 weeks</td>
<td>Bucindolol, 12.5</td>
<td>86±2</td>
<td>87±2</td>
<td>114±3</td>
<td>0.247±0.013</td>
<td>Decreased 6.0±1.2</td>
<td>Increased 1.2±2.6</td>
</tr>
<tr>
<td>Bristow II, 1994 (13) medium-dose</td>
<td>32 vs. 34</td>
<td>56±2 vs. 52±2</td>
<td>56 vs. 59</td>
<td></td>
<td>12 weeks</td>
<td>Bucindolol, 50</td>
<td>87±2</td>
<td>87±2</td>
<td>122±4</td>
<td>0.241±0.012</td>
<td>Decreased 5.0±1.4</td>
<td>Increased 1.2±2.6</td>
</tr>
<tr>
<td>Bristow III, 1994 (13) high-dose</td>
<td>35 vs. 34</td>
<td>56±1 vs. 52±2</td>
<td>60 vs. 59</td>
<td></td>
<td>12 weeks</td>
<td>Bucindolol, 200</td>
<td>88±2</td>
<td>87±2</td>
<td>117±3</td>
<td>0.232±0.011</td>
<td>Decreased 5.0±1.4</td>
<td>Increased 1.2±2.6</td>
</tr>
<tr>
<td>CIBIS, 1994 (14)</td>
<td>320 vs. 321</td>
<td>60.1±1.2 vs. 59.2±1.1</td>
<td>82.5 vs. 83</td>
<td>Chronic heart failure of various etiologies, LVEF <0.40</td>
<td>1.9±0.1 years</td>
<td>Bisoprolol, 3.8±0.2</td>
<td>82.8±1.5</td>
<td>82.5±1.6</td>
<td>127.7±1.7</td>
<td>0.250±0.009</td>
<td>Decreased 15.7±1.7</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Olsen, 1995 (15)</td>
<td>36 vs. 24</td>
<td>54±2 vs. 50±3</td>
<td>94 vs. 92</td>
<td>Stable heart failure caused by ischemic or idiopathic dilated cardiomyopathy, LVEF <0.35</td>
<td>3 months</td>
<td>Carvedilol, 50 weight <75 kg; 100 weight >75 kg</td>
<td>87±3</td>
<td>83±3</td>
<td>116±18</td>
<td>0.20±0.01</td>
<td>67±3</td>
<td>84±3</td>
</tr>
<tr>
<td>PRESCISE, 1996 (16)</td>
<td>133 vs. 145</td>
<td>59.3±11.8 vs. 61.2±11.8</td>
<td>74 vs. 73</td>
<td>LVEF ≤0.35</td>
<td>6 months</td>
<td>Carvedilol, 28±13</td>
<td>85±12</td>
<td>83±12</td>
<td>117±18</td>
<td>0.22±0.07</td>
<td>Decreased 16.3</td>
<td>Decreased 1.9</td>
</tr>
<tr>
<td>MOCHA I, 1996 (17) low-dose</td>
<td>83 vs. 84</td>
<td>58±11 vs. 60±11</td>
<td>74 vs. 76</td>
<td>Symptomatic heart failure from ischemic or non-ischemic dilated cardiomyopathy, LVEF <0.35</td>
<td>6 months</td>
<td>Carvedilol 12.5</td>
<td>86±15</td>
<td>83±16</td>
<td>115±19</td>
<td>0.23±0.08</td>
<td>70±21</td>
<td>80±12</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of inclusion trials (Continue)

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size, n</th>
<th>Mean age, year beta-blocker vs. control</th>
<th>Men, % beta-blocker vs. control</th>
<th>Objects of study</th>
<th>Average follow-up time</th>
<th>Beta-blocker therapy, final dose, mg/day</th>
<th>Baseline heart rate in treatment group, beats/min</th>
<th>Baseline heart rate in control group, beats/min</th>
<th>Baseline systolic pressure in treatment group, mm Hg</th>
<th>Baseline mean LVEF in treatment group</th>
<th>Heart rate in follow-up treatment group, beats/min</th>
<th>Heart rate in follow-up control group, beats/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOCHA II, 1996 (17)</td>
<td>89 vs. 84</td>
<td>60±13 vs. 60±11</td>
<td>76 vs. 76</td>
<td>Medium-dose</td>
<td></td>
<td>Carvedilol, 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOCHA III, 1996 (17)</td>
<td>89 vs. 84</td>
<td>60±13 vs. 60±11</td>
<td>78 vs. 76</td>
<td>High-dose</td>
<td>Carvedilol, 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohn, 1997 (18)</td>
<td>70 vs. 35</td>
<td>59.7±13 vs. 60.6±11.6</td>
<td>54 vs. 66</td>
<td>Symptomatic, advanced heart failure, LVEF ≤0.35</td>
<td>6 months</td>
<td>Carvedilol, 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANZ, 1997 (19)</td>
<td>207 vs. 208</td>
<td>67 vs. 80</td>
<td></td>
<td>Chronic stable heart failure due to ischemic heart disease, LVEF <0.45</td>
<td>6 months</td>
<td>Carvedilol, 47 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIBIS II, 1999 (20)</td>
<td>1327 vs. 1320</td>
<td>61 vs. 61</td>
<td>81 vs. 80</td>
<td>Symptomatic heart failure, LVEF ≤0.35</td>
<td>1.3 years</td>
<td>Bisoprolol, 5.0-10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESOLVD, 2000 (21)</td>
<td>214 vs. 212</td>
<td>62±12 vs. 61±11</td>
<td>79 vs. 80</td>
<td>LVEF <0.40</td>
<td>17 weeks</td>
<td>Metoprolol CR 156±70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strum, 2000 (22)</td>
<td>51 vs. 49</td>
<td>51±11 vs. 52±10</td>
<td>86 vs. 90</td>
<td>LVEF ≤0.25</td>
<td>2 years</td>
<td>Atenolol, 125 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEST, 2001 (23)</td>
<td>1354 vs. 1354</td>
<td>60±12.6 vs. 60±123</td>
<td>77 vs. 79</td>
<td>NYHA class III or IV heart failure that was due to primary or secondary dilated cardiomyopathy, LVEF ≤0.35</td>
<td>3 years</td>
<td>Bucindolol, 50 weight <75 kg or 100 mg <75 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPRICORN, 2001 (24)</td>
<td>975 vs. 984</td>
<td>63 vs. 63</td>
<td>73 vs. 74</td>
<td>AMI LVEF ≤0.4</td>
<td>2.5 years</td>
<td>Carvedilol, 12.5-50 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACKER, 2001 (25)</td>
<td>1156 vs. 1133</td>
<td>63.4±11.5 vs. 63.2±11.4</td>
<td>79 vs. 80</td>
<td>Severe chronic heart failure, LVEF <0.25</td>
<td>10.4 months</td>
<td>Carvedilol, 37 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERIT-HF, 2002 (26)</td>
<td>1806 vs. 1845</td>
<td>63.7±11.4 vs. 63.6</td>
<td>77.6 vs. 77.2</td>
<td>Symptomatic chronic heart failure, NYHA class II or IV, LVEF ≤0.40</td>
<td>2.4 years</td>
<td>Metoprolol, 192/76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Characteristics of inclusion trials (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size, n</th>
<th>Mean age, year beta-blocker vs. control</th>
<th>Men, % beta-blocker vs. control</th>
<th>Objects of study</th>
<th>Average follow-up time</th>
<th>Beta-blocker therapy, final dose, mg/day</th>
<th>Baseline heart rate in treatment group, beats/min</th>
<th>Baseline heart rate in control group, beats/min</th>
<th>Baseline systolic pressure in treatment group, mm Hg</th>
<th>Baseline mean LVEF in treatment group</th>
<th>Heart rate in follow-up control group</th>
<th>Heart rate in follow-up treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRISTMAS, 2003 (27)</td>
<td>193 vs. 194</td>
<td>62±9 vs. 63±9</td>
<td>90 vs. 90</td>
<td>Stable chronic heart failure owing to coronary artery disease, NYHA class I–III, LVEF ≤0.40</td>
<td>6 months</td>
<td>Carvedilol, 125-100</td>
<td>77±11</td>
<td>78±13</td>
<td>127</td>
<td>0.30</td>
<td>65±13</td>
<td>81±13</td>
</tr>
<tr>
<td>CARMEN I, 2004 (28)</td>
<td>191 vs. 190</td>
<td>61.9 vs. 62.9</td>
<td>77 vs. 84</td>
<td>Stable mild CHF, LVEF <0.40</td>
<td>18 months</td>
<td>Carvedilol, 47.9</td>
<td>77±10.5</td>
<td>78±10.9</td>
<td>129</td>
<td>———</td>
<td>70-75</td>
<td>75-80</td>
</tr>
<tr>
<td>CARMEN II, 2004 (28)</td>
<td>191 vs. 190</td>
<td>62.1 vs. 62.9</td>
<td>81 vs. 84</td>
<td></td>
<td>12 months</td>
<td>Carvedilol, 47.9</td>
<td>78±10.9</td>
<td>78±10.9</td>
<td>131</td>
<td>———</td>
<td>70-75</td>
<td>75-80</td>
</tr>
<tr>
<td>CIBIS III, 2005 (29)</td>
<td>505 vs. 505</td>
<td>72.4±5.8 vs. 72.5±5.7</td>
<td>65.9 vs. 70.5</td>
<td>NYHA class II or III, LVEF ≤0.35</td>
<td>1.22 years</td>
<td>Bisoprolol, 5-10</td>
<td>78.8±13.8</td>
<td>79.5±13.2</td>
<td>134.5±17.0</td>
<td>0.288±0.048</td>
<td>66.7±11.8</td>
<td>67.5±12.7</td>
</tr>
<tr>
<td>ENECA, 2005 (30)</td>
<td>505 vs. 505</td>
<td>71.97±5.02 vs. 71.58±0.30</td>
<td>70.15 vs. 76.58</td>
<td>NYHA class II–IV, LVEF ≤0.35</td>
<td>2 months</td>
<td>Nebivolol, 7.4</td>
<td>76.90±10.88</td>
<td>75.29±9.96</td>
<td>134.64±16.57</td>
<td>0.254±0.0079</td>
<td>67.08±9.21</td>
<td>75.00±9.62</td>
</tr>
<tr>
<td>SENIORS, 2005 (31)</td>
<td>1067 vs. 1061</td>
<td>76.1±4.8 vs. 76.1±4.6</td>
<td>61.6 vs. 64.7</td>
<td>A clinical history of chronic heart failure, LVEF ≤0.35</td>
<td>12 months</td>
<td>Nebivolol, 7.7</td>
<td>79.2±13.6</td>
<td>78.9±13.7</td>
<td>138.6</td>
<td>0.36±0.13</td>
<td>66.8±12.5</td>
<td>77.4±13.5</td>
</tr>
</tbody>
</table>

LVEF - left ventricular ejection fraction; NYHA - New York Heart Association

Data synthesis

Only 19 out of 27 trials or subgroups provided endpoints of interest. For the remaining reports described only the lower heart rate in the beta-blockers group compared with the placebo group. In the final meta-analysis, 11 trials or subgroups provided heart rate data at both baseline and follow-up. We performed subgroup analysis by different heart rate patterns to determine the effect of beta-blockers on heart rate. The sensitivity analysis was performed by using the random-effect model and the fixed-effect model. The heterogeneity was low, and the fixed-effect model was used. The results of the meta-analysis indicated that beta-blockers reduced heart rate in people with heart failure, and the benefit of beta-blockers was more prominent when heart rate was greater than 70 beats/min. The benefit of beta-blockers was more significant when heart rate was greater than 70 beats/min, especially in people whose heart rate was greater than 80 beats/min. The sensitivity analysis showed that the results of the meta-analysis were robust. The benefit of beta-blockers was more significant in people with heart rate greater than 70 beats/min and subgroup with baseline heart rate >80 beats/min, respectively. The use of beta-blockers in the treatment of HF in people with a baseline heart rate >80 beats/min was beneficial. Heart rate was controlled at 67 beats/min or above in 25 clinical trials or subgroups, and the lowest baseline average heart rate was 76.90±10.88 beats/min in the ENCA trial. The other trials reported heart rate at 60–70 beats/min. Heart rate was controlled at 65–70 beats/min in 12 trials, 70–80 beats/min in 5 trials, and >80 beats/min in 8 trials. The lowest baseline heart rate in 19 trials was 91 beats/min. The lowest baseline heart rate in 3 trials was 70–80 beats/min, and the highest was >80 beats/min. The use of beta-blockers in the treatment of HF in people with a baseline heart rate >80 beats/min was beneficial. Heart rate was controlled at 67 beats/min or above in 25 clinical trials or subgroups, and the lowest baseline average heart rate was 76.90±10.88 beats/min in the ENCA trial. The use of beta-blockers in the treatment of HF in people with a baseline heart rate >80 beats/min was beneficial.
reduce heart rate below 70 beats/min. The sensitivity analysis using the random-effect model yielded significantly similar results.

The cumulative meta-analysis was performed according to the end-point heart rate from high to low (Fig. 6). Accumulated to MOCHA I trial, there was no significant difference in mortality between the experimental group and the control group (RR=0.91, 95% CI 0.82–1.02). Accumulated to SENIORS trial (heart rate controlled 68.8 beats/min), there was a difference in mortality between the experimental and the control groups (RR=0.90, 95% CI 0.82–0.99). The end-point heart rate of MOCHA I trial was 70 beats/min and that of SENIORS trial was 68.8 beats/min. The results showed no significant differences in mortality between placebo and beta-blockers in controlling the heart rate to 70 beats/min. The mortality rate was reduced when the heart rate was lowered to 68.8 beats/min by beta-blockers compared with that of the control group. This outcome was consistent with the results of subgroup analysis.

In 27 trials or subgroups, only CIBIS II, MERIT-HF, and MOCHA III showed that the use of beta-blockers reduced the mortality in patients with HFrEF, whereas there was no significant difference in the mortality between the experimental and the control groups in other 24 trials or subgroups. The heterogeneity of the inclusion test was low, and the fixed effect model was adopted. Our meta-analysis (Fig. 7) showed that beta-blocker therapy reduced the mortality in patients with HFrEF (RR=0.79, 95% CI 0.74–0.84).

Discussion

Heart rate is an independent risk factor for HF (6). The resting heart rate has been identified as a particular modifying risk factor for HFrEF (32). Previous evidence (33, 34) suggests that the higher reduction in the heart rate resulted in a better overall prognosis in patients with HF. Therefore, recent guidelines (3, 5) recommend stricter heart rate control with a target of 60 or 70 beats/min. However, there is no sufficient basis for setting these heart rate targets. Observational studies (7) have shown that for the general population, the total mortality and cardiovascular mortality rates were the lowest in people with heart rate of approximately 65 beats/min. For patients with HFrEF, the mortality rate was the lowest when the heart rate was between 70 and 75 beats/min (8). All these results suggest that for patients with HF, heart rate is clearly related to mortality. Not the lower the better, but there is a heart rate range to make mortality the lowest. Subgroup analysis according to baseline heart rate showed that there was no significant benefit from beta-blockers in the population with baseline heart rate of 77 beats/min. In addition, the cumulative meta-analysis showed statistical differences until the end-stage heart rate was below 70 beats/min. The RR values gradually decreased along with the decrease of heart rate, but the decrease range became smaller and smaller. Accumulated to CHRISTMAS trial, RR value was higher than before, which may be related to the sample size of the test itself. It may also be that when the heart rate is controlled to 65 beats/min, the heart rate further decreases without more benefit or even the benefit begins to decrease. This needs further trial confirmation.

Beta-blockers reduce morbidity and mortality in patients with HFrEF (1). Nonetheless, it remain unclear whether the key mechanisms underpinning their benefits are protection of adrenergic receptors from heightened sympathetic activity or reduction in heart rate. It is also uncertain whether the efficacy of beta-blocker is related to dose, reduction in heart rate, or the achieved heart rate (35, 36). Whether clinicians should strive to achieve a target heart rate or a target dose of beta-blocker remains unanswered.

A large retrospective clinical (37) study involving 1,669 patients suggested that the use of beta-blockers to achieve the target dose or target heart rate (50–70 beats per minute) had similar benefits and that controlling the heart rate after reaching the target dose was still beneficial. The new premise was that the aim of using beta blockers is not to achieve the maximum tolerable dose, but to control heart rate (38, 39).

The SHIFT (32) trial is the first trial to specifically test the effect of isolated heart-rate reduction on outcomes in a population with HF. Treatment with ivabradine was associated with an average reduction in heart rate of 15 bpm from a baseline value of 80 bpm, which was largely maintained throughout the course of the study. In the SHIFT population, patients with heart rates higher than the median were at increased risk of an event and received greater event-reducing benefit from ivabradine than did those with heart rates lower than the median. This is consistent with our conclusion.

The relationship between dose and efficacy of beta-blockers was not evaluated in this paper. However, our subgroup analysis confirmed that the use of beta blockers did not reduce mortality in patients with baseline heart rate of 77 beats/min. In the SHIFT (32) trial, 3,181 (56%) patients on beta blockers were treated with at least 50% of the target doses, and 1,488 (26%) were at target doses. The results showed that the use of ivabradine on this basis benefited by lowering the heart rate, which suggests that the dose of the Beytagh blocker is not critical. Compared with placebo treatment, there was no significant difference in mortality among those using beta blockers that controlled heart rate over 70 beats/min. Controlling heart rate at 60–70 beats/min can significantly reduce mortality. The cumulative meta-analysis also showed that there was no significant difference in the mortality between placebo and beta-blocker groups when control-
Figure 3. Assessment of the effect of beta-blockers on mortality by subgroup analysis grouped according to baseline heart rate in the experimental group.
Table 1. Summary of included studies in the meta-analysis of beta-blockers on mortality in patients with heart failure treated with beta-blockers.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events</th>
<th>Total</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MH, Fixed</td>
<td>MH, Fixed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td>CAPRICORN2004</td>
<td>116</td>
<td>975</td>
<td>161</td>
<td>564</td>
<td>0.70 [0.62, 0.87]</td>
<td>0.63 [0.55, 0.71]</td>
</tr>
<tr>
<td>CARMEN 2004</td>
<td>14</td>
<td>191</td>
<td>14</td>
<td>190</td>
<td>0.99 [0.89, 1.09]</td>
<td>1.00 [0.91, 1.10]</td>
</tr>
<tr>
<td>CHRISTMAS2003</td>
<td>7</td>
<td>183</td>
<td>6</td>
<td>184</td>
<td>1.40 [0.60, 2.63]</td>
<td>1.14 [0.60, 2.16]</td>
</tr>
<tr>
<td>ENE1000</td>
<td>7</td>
<td>134</td>
<td>7</td>
<td>126</td>
<td>0.94 [0.64, 1.37]</td>
<td>1.00 [0.64, 1.56]</td>
</tr>
</tbody>
</table>

Total (95% CI) 1483 1484 100.0% 0.82 [0.67, 1.00]

Total events 144 177

Heterogeneity:
- Test for overall effect: Z = 1.92 (P = 0.06)
- Favours experimental

Figure 4. Effect of beta-blockers on mortality in population with a baseline heart rate of 77 beats/min

Figure 5. Assessment of the effect of beta-blockers on mortality by subgroup analysis grouped according to end-stage heart rate in the experimental group.
The use of beta-blockers lowered the heart rate to 68.8 beats/min and reduced the mortality compared with that in the control groups. Our findings suggest that beta-blockers can reduce mortality in the treatment of HF depending on the specific heart rate.

Study limitations

This was a meta-analysis. Background therapy of the included trials would have changed since these trials were conducted. In addition, the heart rate was not measured in a standardized fashion. Moreover, different patient study groups and different beta-blockers were used in different trials, which is a major reason for heterogeneity. The degree of heterogeneity is also assessed. A certain degree of heterogeneity does not affect the stability of the results.

Conclusion

The main benefit of beta-blockers in the treatment of HF is achieved by lowering heart rate. Patients with HFrEF whose heart rate is approximately 70 beats/min have the lowest mortality. In addition, the use of beta-blockers did not significantly benefit patients with HFrEF whose heart rate was 77 beats/min before the use of beta-blockers. In patients with HFrEF with a
higher heart rate, the administration of beta-blockers to control heart rate to 70 beats/min can significantly reduce mortality. Further reduction of heart rate to 65 beats/min may not increase the benefit.

Acknowledgments: We would like to thank Hui Li, MD and Haibo Xu, MD, for their valuable input.

Conflict of interest: None declared.

Peer-review: Externally peer-reviewed.

References

2. Lee HY, Baek SH. Optimal Use of Beta-Blockers for Congestive Heart Failure. Circ J 2016; 80: 565-71. [Crossref]
5. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al.; Authors/Task Force Members; Document Reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18: 891-975. [Crossref]
20. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999; 353: 9-13. [Crossref]
24. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 2001; 357: 1385-90. [Crossref]

29. Willenheimer R, van Veldhuisen DJ, Silke B, Erdmann E, Follath F, Krum H, et al.; CIBIS III Investigators. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation 2005; 112: 2426-35. [Crossref]

