Mönckeberg's Medial Sclerosis of the Thyroid: An Unusual Case Presentation

ABSTRACT

Mönckeberg sclerosis (MS) is an idiopathic and non-inflammatory vascular disease. It is characterized by calcification of the medium layer of muscle arteries. In contrast to atherosclerosis, MS does not cause narrowing of the vessel wall. In this study, we present a rare case who underwent total thyroidectomy due to Graves’ Disease, and whose histopathological examination revealed the diagnosis of Mönckeberg Medial Sclerosis.

Keywords: Cardiovascular events, Mönckeberg’s sclerosis, thyroid

Mönckeberg sclerosis, a vascular disease identified initially in 1903, is characterized by calcification of the medial layer of muscle arteries (1). Although it typically affects persons over 50 years of age who have type 2 diabetes and chronic kidney disease, it can also affect younger people who do not have any concomitant conditions. It is often found in peripheral arteries, giving rise to “pipestem” arteries (2). It usually does not cause clinical symptoms because, unlike atherosclerosis, it does not cause narrowing of the vascular lumen (3).

In this study, we present a patient who underwent total thyroidectomy due to Graves’ Disease at Ankara Etlik City Hospital and was diagnosed with Mönckeberg Sclerosis as a result of the histopathological examination of the excised specimen.

CASE

A 50-year-old female patient has been under follow-up for Graves’ Disease for two years. She presented to the Internal Medicine clinic with complaints of palpitations and weight loss. The patient did not have diabetes mellitus or chronic kidney disease. She had no known comorbidities.

There were no pressure symptoms or ophthalmopathy. Medical treatment was started for hyperthyroidism, and the patient was using propylthiouracil regularly for 6 months.

The physical examination was normal. Goitre or palpable nodules were not detected during the physical examination. Laboratory findings showed hyperthyroidism. Thyroid Stimulating Hormone (TSH): 0.26 mIU/L, Free T4: 2.14 ng/dL, Free T3: 6.55 ng/L, TSH Receptor Blocking Antibody (TRB): 11 IU/L

Ultrasound findings revealed the right lobe size of 20x32x44 mm. There was an isoechoic nodule measuring 6x5x6 mm. The size of the left lobe was 17x17x40 mm. There was a hypoechoic nodule measuring 2x3x3 mm in superior-anterior diameters, and a nodule with mixed echogenicity, measuring 7x8x9 mm, located in the middle. The size of the isthmus was 4 mm. The parenchyma was observed to have an extremely heterogeneous appearance. Parenchymal echogenicity was decreased. Fibrous bands and pseudonodular appearance were present in some places within the parenchyma. No lymph nodes of pathological shape and size were observed in either cervical anterior chain.

The patient underwent total thyroidectomy. Histopathologically, Mönckeberg sclerosis was reported. Mönckeberg’s medial calcific sclerosis is seen in this artery to the right of thyroid tissue. This finding occurs most often in the elderly. Small muscular arteries in the pelvis, neck, and breast regions can be affected. Calcium deposits are mainly found in the media.
of muscular arteries. Some authors think that the media and inter- 
nal elastic lamina are both involved (Figure 1). In addition to the 
obvious medial calcification, there is calcification of the internal 
estatic lamina (Figure 2).

The patient was consulted to the cardiology and cardiovascular 
surgery to rule out any comorbid-related diseases. The patient had 
no vascular or cardiac-related disease. The patient was discharged 
uneventfully after the second day of the operation.

DISCUSSION

The tunica media layer of the arteries to the extremities or visceral 
organs becomes dystrophically calcified in Mönckeberg’s medial 
calcific sclerosis (4). The uterine, breast, and thyroid arteries in 
women have also been frequently mentioned, despite the fact that 
it was initially noticed in the lower limb arteries of aged men (5). 
According to Kröger et al. (6)’s study, its incidence in society was 
6.9% for women and 13.3% for men. Despite the fact that its cause 
is unknown, Sato et al. (7)’s study provided evidence that physi-
ological thyroid hormone concentration directly promotes MGP 
(Mönckeberg) gene expression in cells of smooth muscles via thy-
roid hormone nuclear receptors, preventing vascular calcification 
in vivo. In line with these findings, we have to mention that our 
patient had hyperthyroidism.

Mönckeberg sclerosis is thought to cause the loss of arterial flex-
ibility, isolated systolic hypertension, hypertrophy of the left ven-
tricle, and decreased myocardial perfusion, even though it was 
once assumed to be a harmless condition (8). MS-related decrease 
in arterial elasticity raises cardiovascular morbidity and mortality 
similar to non-insulin-dependent diabetes (9). Other areas of cal-
cification should be carefully investigated, considering the rise 
in cardiovascular morbidity in people with this illness. To fully 
comprehend the connection between the thyroid gland, vascular 
calculi, and the related general disease, more research is required 
(10).

CONCLUSION

This case report is an unusual presentation of Mönckeberg sclero-
sis of the thyroid with hyperthyroidism. The diagnosis was con-

firmed with a pathological investigation of the surgical thyroidec-
tomy specimen. Depending on the preponderance of the diseased 
areas, Mönckeberg sclerosis is a chronic degenerative disorder that 
affects the arteries and has a variety of clinical symptoms. People 
who are predisposed to systemic illnesses like diabetes and chronic 
kidney disease are more likely to develop the disease. Differential 
diagnosis is challenging because the condition is uncommon and 
asymptomatic.

Given that Mönckeberg sclerosis increases cardiovascular mortality 
and morbidity, additional testing should be conducted on patients 
who have a histological diagnosis of the condition to see if other 
large arteries are also involved.

Informed Consent: Written informed consent was obtained from the patients 
who agreed to take part in the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – M.A.; Design – M.A.; Supervision – H.E.G.; 
Resource: H.E.G.; Materials: M.B.K., ŞÇ.; Data Collection and/or Processing 
– M.B.K., ŞÇ.; Analysis and/or Interpretation – M.A.; Literature Search – 
M.B.K., ŞÇ.; Writing – ŞÇ., M.A.; Critical Review – H.E.G.

Declaration of Interests: The authors have no conflict of interest to declare.

Funding: The authors declared that this study has received no financial 
support.

REFERENCES

1. Micheletti RG, Fishbein GA, Currier JS, Fishbein MC. Mönckeberg 
sclerosis revisited: A clarification of the histologic definition of 
of thyroid storm in a patient with metastatic follicular carcinoma of 
thyroid. Indian J Endocr Surg Res 2022;17(2):69-71. [CrossRef]
3. Yamamoto Y, Ishikawa Y, Shimoto M, Matsumura M. Mönckeberg’s 
sclerosis. J Gen Fam Med 2020;22(1):55-6. [CrossRef]
4. Lanzer P. Mönckeberg medial calcinosis. Z Kardiol [Article in German] 
1998;87(8):586-93. [CrossRef]
5. Dastamani C, Kairi E, Arapoglou V, Youza E, Karvouni E, Kondi-Pafiti A. 
Unusual presentation of Mönckeberg’s sclerosis in the thyroid vessels 
Prevalence of peripheral arterial disease - results of the Heinz Nixdorf 
Recall Study. Eur J Epidemiol 2006;21(4):279-85. [CrossRef]